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I Introduction

Measuring teacher effects has been of longstanding importance in both research and policy.

Accurately measuring teachers’ impacts, often referred to as their value-added, is critical,

as these measures are often tied to promotion and retention decisions, and value-added

measures are used to answer a wide range of research questions.1 A growing literature

now documents that teacher effects extend beyond traditional measures of test score value-

added, with teachers influencing outcomes such as student behavior, attendance, and grades

(Gershenson (2016); Jackson (2018); Kraft (2019); Liu and Loeb (2019); Petek and Pope

(2018)). Furthermore, traditional test score value-added does not necessarily identify the

“best” teachers because teachers who effectively increase test scores are not necessarily

effective at improving socio-emotional skills (Kraft (2019); Petek and Pope (2018)).

While there is an emerging consensus that teacher effects are multidimensional, it is

not clear how to best measure teacher effectiveness or summarize the many dimensions of

effectiveness into simple metrics that may be useful for personnel decisions. This paper

discusses the challenges and implications of estimating teacher value-added in a multidi-

mensional empirical Bayes framework, including important ways in which this is different

from the single-dimensional model often used to estimate test score value-added. We also

highlight complications that arise when using students’ future outcomes, e.g., their test

scores in the year after being taught, as one of the measures and provide a novel way to

account for the fact that these outcomes are also affected by the students’ future teachers.

We then discuss approaches to construct summary measures of teacher effects, results on

these summary measures and the implied dimensionality of teacher effects, and the practical

importance of using these methods and results.

We consider two broad approaches for summarizing teacher effects which seek to balance

the goal of identifying true effectiveness with practical evaluation limitations. First, we use

1For example, Dinerstein et al. (2021) use value-added estimates to measure human capital depreciation;
Opper (2019) uses value-added measures to estimate endogenous peer effects; and Jackson and Bruegmann
(2009) use value-added measures to estimate how teachers learn from each other.
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principal component analysis to optimally reduce the dimensions of short-term effectiveness

on which teachers are evaluated while minimizing information loss. Then we use the prin-

cipal components to create summary measures of effectiveness and examine the dimensions

of teacher effects. Second, we consider the case of a decisionmaker who wants to evaluate

teachers based on their long-term effects, and construct summary measures which weight

short-term measures of effectiveness so they optimally predict teachers’ long-term effects.

While the two approaches are conceptually straightforward, implementing either one is

complicated by the fact that each dimension of teacher effectiveness is estimated with noise.

Furthermore, different measures may have different amounts of noise, and both the error

with which each dimension of effectiveness is estimated and the true effects are correlated

across the dimensions. Thus, we start by formally defining a multidimensional empirical

Bayes framework to estimate teacher effects. While we are not the first to apply this frame-

work for estimation of value-added models, the model are several important implications

for estimation and interpretation that deserve discussion.

We discuss, for example, how the standard intuition that value-added measures are sim-

ply “shrunken” versions of the raw estimates breaks down in a multidimensional setting.

Multidimensional empirical Bayes estimates for any given outcome will incorporate informa-

tion about a teacher’s estimated effect on all dimensions, since the estimated effectiveness

on the other dimensions inform our belief about a teacher’s true effect on the dimension in

question.2 For example, the best estimate of a teacher’s impact on test scores will include

information about the teacher’s estimated impact on attendance. The magnitude and di-

rection of the weights placed on the other dimensions, such as attendance, depend on the

relative covariances of the true measures versus the error terms. Thus, even if teachers

who increase attendance also tend to increase test scores, the multidimensional empirical

Bayes estimates for test scores may put negative weight on the teachers’ estimated effect

2In the single dimension setting, our prior is the mean, so teacher effects are shrunk to the mean. However,
in the multidimensional setting, our prior is informed by our estimates of teacher effects on other dimensions
and the covariances of these effects. So in this case, the extent to which we ”shrink” or adjust our estimates
depends on our estimates for other dimensions.
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on attendance if the error terms are also positively correlated.

Next, we discuss how to use estimates from the multidimensional empirical Bayes frame-

work to derive estimates of 1) the principal components, and 2) the relationship between

the short-term effects and long-term effects. In this discussion, we explain why doing prin-

cipal component analysis on the empirical Bayes estimates is different (and less preferred)

than calculating the principal components of the true measures via an eigendecomposition

of the estimated covariance matrix. We also show that multidimensional empirical Bayes

estimates can be used as regressors to uncover the relationships between the true measures

and outcomes of interest, a fact that is well-known in the single dimension case but is more

nuanced in the multiple dimension case (Jacob and Lefgren (2008)).

We apply these techniques to estimate and summarize the effects of thousands of New

York City teachers. Our estimates indicate that more than half of the variation in teacher

effects on the outcomes we observe can be captured with one dimension. Furthermore,

especially in elementary school, these short-term measures explain a large fraction of the

teacher effects on students’ long-term outcomes, around 80% for elementary school teachers.

Our summary measures based on PCA are very similar to those which weight short-term

effects based on their prediction of long-term effectiveness. In contrast, there is noticeable

information loss when relying on a single outcome measure, rather than leveraging informa-

tion from all of the measures. Likewise, there is little overlap in the teachers who are at the

bottom five percent in terms of the summary measures and measures that rely on a single

dimension. Thus, which measures are used for evaluation can have important implications

for individual teachers.

This paper combines two important strands of the literature on teacher value-added.

The first focuses on how to use imprecise measures of teachers’ impacts on student test

scores to evaluate teachers. This perspective led to the development of one-dimensional

empirical Bayes estimation of teacher value-added (e.g., Kane and Staiger (2008); Chetty

et al. (2014a)) and the design of teacher evaluation systems that aim to optimally combine

teacher value-added measures with other measures of teacher practice, such as principal
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ratings (e.g., Mihaly et al. (2013); Bacher-Hicks et al. (2020)). This strand, however, focuses

exclusively on teachers’ ability to improve students’ test scores. More recent papers suggest

that the focus on test scores may be insufficient, showing that teachers impact non-test

score outcomes, that some teachers are better at improving non-test score outcomes than

test score outcomes (and vice versa), and that teacher effects on non-test score outcomes are

more predictive of teacher effects on students’ long-term outcomes than teacher effects on

test scores (e.g., Gilraine and Pope (2021); Gershenson (2016); Jackson (2018); Kraft (2019);

Liu and Loeb (2019); Petek and Pope (2018)). Since they build on prior research, however,

these papers generally separate the outcomes into traditional test score value-added and

other measures, rather than focusing on how best to combine the various measures for

evaluation or research.

While we are by no means the first to implement a multidimensional empirical Bayes

framework, we hope to provide readers with a better understanding of the practical impli-

cations of using such a model, regardless of whether it is used to estimate teacher quality

(e.g., Jackson (2018); Kraft (2019)), school quality (e.g., Beuermann and Jackson (2020);

Abdulkadiroglu et al. (2020); Angrist et al. (2020)), hospital quality (e.g., Hull (2020)), or

county effects (e.g., Chetty and Hendren (2018)). Much of the discussion about empirical

Bayes estimates centers on them being “shrunken” versions of the raw estimates. While this

is true in the single-dimension setting, in the multidimensional setting this intuition is no

longer sufficient. We also discuss how to use this framework to conduct principal component

analysis and assess the relationship of teacher effects on multiple outcomes, while account-

ing for the fact that the true measures of teacher effectiveness are unobserved. Specific to

the teacher value-added context, we also develop a new approach to account for the fact

that students’ outcomes in the years after being taught by a teacher are also affected by

the students’ future teachers.

The paper proceeds as follows: Section 2 describes the multidimensional empirical Bayes

framework and estimation; Section 3 describes the approaches for summarizing teacher ef-

fectiveness; Section 4 describes the data; Section 5 presents the results; Section 6 concludes.
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II Multidimensional Empirical Bayes Estimation

This section starts by describing a multidimensional empirical Bayes estimation framework

that can be used to estimate teacher effects when effects are multidimensional. In the single

dimension, it is identical to prior models based on test score effectiveness (e.g., Kane and

Staiger (2008)). The key difference is that we allow for a more complex variance structure.

In particular, we allow for the error terms to be correlated across measures within a year

and across years when the measures involve future outcomes. Allowing for the error terms

to be correlated across years is important because different cohorts of students may have

the same teachers in the future. We then briefly discuss the intuition behind the resulting

empirical Bayes estimates, since they are no longer simply a shrunken version of the raw

measures, and conclude by describing the steps for the full estimation procedure.

II.A Multidimensional Empirical Bayes Framework

Similar to other value-added papers, we start with a simple model for the production of

student outcomes and role of teacher effects. We start by assuming there are K observed

student outcomes of interest. These outcomes can include student test scores as well as

other important outcomes such as students’ attendance, behavior, self-efficacy, graduation

rates, postsecondary attainment, and earnings, and can include outcomes measured in the

year the teacher taught the student or in future years (Bacher-Hicks et al. (2019, 2020);

Chamberlain (2013); Chetty et al. (2014a,b); Gershenson (2016); Gershenson et al. (2018);

Gilraine and Pope (2021); Jackson (2018); Kraft (2019); Ladd and Sorensen (2017)). We

denote student i’s kth outcome in year t as yi,t,k and let Xi,t be a vector of student covariates

that are not impacted by their teacher in year t. These characteristics generally include

outcome measures from year t− 1. The effect that teacher j would have on student i’s kth

outcome in year t if she taught him is Θj,t,k, which we refer to as her “true value-added”

on the kth measure. We assume that this effect is the same across students and hence do
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not index Θj,t,k by i.3

Like most of the value-added literature, we assume that students’ contemporaneous

outcomes can be expressed as a linear function of: their teacher’s effect on their outcome

(which is assumed to be the same for all students); a vector of their covariates; a classroom-

level shock shared by all students denoted as ν̃j,t,k; and an individual level shock denoted

as εi,t,k. Thus, our statistical model of student i’s contemporaneous outcomes is:

yi,t,k = βkXi,t,k + Θj,t,k + ν̃j,t,k + εi,t,k (1)

When using future outcomes, such as the students’ test scores or attendance in the year

after being taught by teacher j, we need to tweak the above model slightly to account for an

additional error term that is shared by some, but not all, of the students. Specifically, this

error term accounts for the fact that many, but not all, of the students taught by teacher j

also share the same classroom in future years. Their future outcomes are thus subject to a

common shock, stemming from both the true value-added of their (shared) future teacher

as well as the future classroom shock. We denote this term as φj′(i),t,k, reflecting the fact

that it depends on i’s subsequent teacher j′.4 The statistical model of student i’s future

outcomes is then:

yi,t,k = βkXi,t + Θj,t,k + ν̃j,t,k + φj′(i),t,k + εi,t,k (2)

We next simplify our model by assuming that teacher effects on student outcomes are

a combination of the teacher’s persistent effectiveness and a year-specific shock to their

effectiveness, i.e., Θj,t,k = Θj,k + ηj,t,k, for some persistent effect Θj,k and a year specific

shock ηj,t,k. We do not incorporate drift in teacher effectiveness here as it complicates the

model presentation, but the model can easily be extended to allow for drift. Appendix B

3See Delgado (2020) and Ahn et al. (2021) for work that relaxes this assumption. Note also that this
assumption means we side-step the issues raised in Goldsmith-Pinkham et al. (2021).

4In this paper, we focus on outcomes in the year after being taught by teacher j. If instead we used
outcome two years after a student is taught by teacher j, we should in theory include two φ error terms.
However, as the outcomes become measured further out, the fraction of students who share future teachers
likely decreases, so the future classroom shocks may be captured reasonably well by the individual error
term.
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shows that extending the model to account for drift in effectiveness does not change the

interpretation of our results and Appendix H discusses how one can incorporate multiple

years of data into the predictions both with and without drift in teacher effectiveness.

With this simplification, we define a new error term νj,t,k = ηj,t,k + ν̃j,t,k, which we

can think of as the error term that combines the classroom shock that is not caused by

the teacher (embedded in the ν̃j,t,k term) with the classroom-level shock that is caused by

the teacher, but not related to a teacher’s persistent effectiveness (embedded in the ηj,t,k

term).5 We will not attempt to separate those two components of the error term in this

paper, as it is not important for our research questions or most policy decisions.6

Dropping the k index to denote vectors of all the outcomes, the statistical model of

student outcomes thus becomes:

yi,t = βXi,t + Θj + νj,t + φj′(i),t + εi,t (3)

A key assumption is that the both the classroom and individual error terms are indepen-

dently distributed across teachers and years, normally distributed, and have mean zero:

νj,t ∼ N(0,Σν) and εi,t ∼ N(0, Σ̃ε). The assumption that the error terms are independently

distributed across years means we assume that teachers are not consistently assigned to

students who do worse (or better) than their covariates would suggest. This assumption is

supported by several papers, which have tested this assumption for each of the measures

we use (Chetty et al. (2014a); Bacher-Hicks et al. (2019); Petek and Pope (2018); Gilraine

and Pope (2021)).

Although we assume the classroom and individual error terms are independent across

years, we do not assume they are independent across measures within a year. This distin-

5For example, a dog barking outside the classroom during a test is a classroom-level shock not caused by
a teacher, and a teacher getting sick on the day of an important lesson is a shock caused by the teacher but
unrelated to persistent effectiveness.

6In contrast, you could imagine a principal who wants to reward some subset of teachers for their per-
formance in the previous year, rather than to predict teacher performance in the subsequent year. In this
case, separating the error terms would be important. As we discuss in Appendix B, separating them also is
important when one allows for teacher drift.
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guishes our model from others in the multidimensional teacher effectiveness literature which

independently calculate value-added measures on each dimension (e.g., Jackson (2018); Pe-

tek and Pope (2018)). Further distinguishing our model is the error term φj′(i),t which is

a function of student i’ future teacher j′, i.e., on the students’ future teacher assignments.

We assume this is also distributed normally, i.e., φj′(i),t ∼ N(0,Σφ), and independent across

individuals who are taught by different teachers in future years.7 We denote Σε = Σ̃ε + Σφ,

as the individual-level variance matrix that we identify using the approach described in the

next section.8

In this formulation we account for errors in the raw value-added measures based on

differential effectiveness of students’ future teachers, and the fact that this is correlated

across cohorts, but we do not directly control for the quality of the future teachers. From

the Bayesian perspective, one could think of this as conditioning on the fact that there are

future teachers of mixed effectiveness, but not on the specific identities of the students’

future teacher. This is in contrast to other work that attempts to use measures of the

subsequent teachers’ effectiveness to adjust students’ future outcomes (Candelaria et al.,

2020; Gilraine and Pope, 2021). We opt against doing so here because a student’s current

teacher may impact their long-run outcomes by directing them to more effective teachers

in subsequent years. In this case controlling for future teachers would inappropriately

condition on an endogenous outcome. This is not without cost. Our method inadvertently

advantages the teachers who happen to pass their students’ off to more effective teachers

in the same way it advantages teachers who happen to have students who do better than

expected. If the measures are used for high-stakes decisions, whether this cost is worth the

benefit is an important policy question.9 Since the main focus in this paper is the variance of

7We also assume that φj′(i),t = 0 for all contemporaneous outcomes. Thus, if the kth measure is a
contemporaneous outcome then both the kth row and kth column of Σφ consist of zeroes.

8As we discuss more later, Σφ is intimately connected with, and can be derived from, Σν and the
distribution of teachers’ true value-added.

9That said, appropriately controlling for both teachers’ quality without adding too much additional
error is computationally challenging and requires teachers’ students to move to many different teachers in
the subsequent years (Jochmans and Weidner, 2019). The specifics of how best to do so is therefore an
interesting research question.
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and relationship between the true effects – and not on the prediction of individual teachers’

effects for use in high-stakes settings – we opt for the approach that leads to consistent

estimates of the covariance matrices.

We define a teacher’s average residuals in year t as:

θj,t =
1

Nj

∑
∀i∈C(j,t)

yi,t − βXi,t (4)

where C(j, t) is the set of students teacher j teaches in year t−1 and ||C(j, t)|| = Nj . From

the statistical model and this definition, we get that:

θj,t−1|Θj ∼ N
(

Θj ,Σν + ζjΣφ +
1

Nj
Σε

)
(5)

where ζj ∈ [0, 1) is determined by how many students of teacher j share the same teacher in

the subsequent year. Specifically, if Nj,j′ is the number of students who have both teacher

j and teacher j′, then ζj =
∑
∀j′

(
Nj,j′−1

Nj

)2

. The numerator is Nj,j′ − 1 rather than Nj,j

because the individual component error term Σε already contains the variance of future

classroom shocks; ζjΣφ thus reflects the additional within-classroom covariance of student

residuals due to some of them sharing the same teacher in the subsequent year.

We further assume that teachers’ true value-added is normally distributed with Θj ∼

N(0,Ω). Bayes Law then implies that:

Θj |θj,t−1 ∼ N
(

Ω∗jθj,t−1,Σ
∗
j

)
(6)

where

Σj = Σν + ζjΣφ +
1

Nj
Σε

Ω∗j = (Σ−1
j + Ω−1)−1Σ−1

j

Σ∗j = (Σ−1
j + Ω−1)−1
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While this provides the full posterior distribution under our normality assumptions,

we generally focus on the mean of the posterior E[Θj |θj,t−1] = Ω∗jθj,t−1. We denote these

empirical Bayes estimates as Θ̂j .

The empirical Bayes framework relies on the strong assumption that both the true

teacher effects and the error terms are normally distributed, which is a common assump-

tion in the literature. More importantly, even if the normality assumption does not hold,

the empirical Bayes estimates will be equivalent to the best linear predictors of the true

teacher effects given the previous years’ estimated teacher effects. See Appendix D for more

discussion of this point and a proof that it is true in our setting.

II.B Intuition behind the Multidimensional Empirical Bayes Estimates

In the multidimensional setting, the matrix Ω∗j contains the weights used to translate the

various measures of teacher quality, θj,t, into predictions of true teacher quality, Θj . In

a single dimensional setting, this simply involves shrinking the measure of teacher quality

toward the overall mean, where the shrinkage factor is based on the signal-to-noise ratio

of the estimates. In the multidimensional setting, however, the translation from estimated

measures to empirical Bayes estimates is more complicated. Most notably, unless both Σj

and Ω are diagonal matrices, the empirical Bayes estimate of one dimension will incorporate

information about the estimates of the other dimensions.10 Intuitively, this makes sense as

the estimated ability of the teacher to improve student test scores tells us something about

the teachers true ability to increase student attendance.

To gain some insight into how information from other measures are incorporated into

the empirical Bayes estimate of a particular measure we use a simple example with only

two measures. Here, Ω =
( σ2

Ω,1 ρΩ

ρΩ σ2
Ω,2

)
and Σj =

( σ2
Σ,1 ρΣ

ρΣ σ2
Σ,2

)
. ρΩ and ρΣ correspond to

the covariance between the two true measures of teacher effectiveness and the two error

terms, respectively, rather than the correlation between the measures. If we denote Ω∗j =

10Technically, this statement is not quite true; if Σj is equal to Ω, the two forces pushing us to weight the
other dimensions cancel each other out and the weights on the other dimensions is still zero. This is shown
in the example below.
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( ω1,1 ω1,2
ω2,1 ω2,2

)
, we get:11

ω1,1 =
1

det(Ω + Σj)

[
σ2

Ω,1σ
2
Ω,2 + σ2

Ω,1σ
2
Σ,2 − ρ2

Ω − ρΩρΣ

]
(7)

ω1,2 =
1

det(Ω + Σj)

[
σ2

Σ,1ρΩ − σ2
Ω,1ρΣ

]
(8)

Thus, when calculating the empirical Bayes estimate of the first measure, the sign of

the weight placed on the second measure depends on the relative covariances of the true

measures versus the error term. This means the empirical Bayes estimate may put a negative

weight on the second measure even when the two true measures are positively correlated if

the error terms are even more positively correlated than the true measures.12

To understand why these negative weights may occur, it is important to recognize that

the second measure of teacher effectiveness provides information on both the true teacher

effects and the unobserved classroom quality, i.e., the error term. The estimate of the second

measure of teacher effectiveness may be large either because: a) the teacher increased her

students’ second outcome, or b) the teacher got a good cohort of students who would

have outperformed expectations regardless of their teacher. In case a) we should increase

our estimate of the teacher’s effect on the students’ first measure, since the true measures

being positively correlated imply that teacher who is good at increasing one outcome is

also likely to be good at increasing the other outcome. On the other hand, in case b) we

should decrease our estimate of her effect on the students’ first measure, since the positive

correlation of the error terms implies the class would likely outperform expectations on all

outcomes even with an average teacher.13 The relative variance and covariances of the true

effects versus the error terms inform us whether a) or b) is the more likely explanation,

11See Appendix I for proof.
12While we use the term “correlated” here, equation (48) makes clear that the comparison of interest

is actually a comparison of the weighted difference between the covariances rather than an unweighted
comparison of the correlations.

13This analysis assumes that the true impact on the two measures is positively correlated, as is the error
term for the two measures. In other words, it assumes both ρΩ and ρΣ are positive, which is what the data
suggest.
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and thus whether we should increase or decrease our estimate of the teacher’s effect on her

students’ first measure after observing a high value of the second measure.

II.C Estimation Details

The multidimensional Bayesian approach outlined in Section II.A describes how to trans-

form the estimated teacher residuals θj,t into the posterior estimates of the teacher’s true

value-added. In doing so, it considered the underlying hyperparameters, such as the covari-

ance matrices of the true teacher value-added and the error terms, as fixed and known to the

researcher. We now discuss how we estimate these hyperparameters from the data. While

we outline the approach here, Appendix I contains the proofs that under the model and

assumptions described above in Section II.A the approach outlined here provides consistent

estimates of the relevant matrices.

We estimate the hyperparameters using the following six steps:

1. Estimate β̂ by fitting the OLS regressions at the student level with teacher

fixed effects. yi,t = βXi,t + νj where νj is a teacher fixed effect. Our vector of

covariates, xi,t consists of indicators for gender, race, year, free and reduced-price lunch

status, English language learner status, and cubic functions of previous outcomes.

2. Estimate Σε using the estimate of the error term from step 1.

Σ̂ε =
1

N

∑
∀i
êi,tê

′
i,t (9)

where êi,t = yi,t − β̂Xi,t − ν̂j and ν̂j are the estimated teacher fixed effects.

3. Calculate average teacher residuals using the estimates of β̂ from step 1.

We estimate the teacher average residuals as:

θj,t =
1

Nj

∑
∀i∈C(j,t)

yi,t − β̂Xi,t (10)
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where C(j, t) is the set of teacher j’s students in year t and Nj = ||C(j, t)||.

In addition, for future outcomes we also calculate the average residuals for students

who have teacher j in year t and teacher j′ in year t+ 1 as:

θj,j′,t =
1

Nj,j′

∑
∀i∈C(j,j′,t)

yi,t − β̂Xi,t (11)

where C(j, j′, t) is the set of teacher j’s students in year t who have teacher j′ in the

next year and Nj,j′ = ||C(j, j′, t)||.

Finally, for future outcomes we also calculate average residuals for students who have

teacher j in year t and do not have teacher j′ in year t+ 1 as:

θj,−j′,t =
1

Nj,−j′

∑
∀i∈C(j,−j′,t)

yi,t − β̂Xi,t (12)

where C(j,−j′, t) is the set of teacher j’s students in year t who do not have teacher

j′ in the next year and Nj,−j′ = ||C(j,−j′, t)||.

4. Estimate Ω using the cross-year covariance between the teacher average

residuals. We start by computing:

Ω̂ =
1

J

∑
θj,tθ

′
j,t−1 (13)

if there are J teachers. We use the covariance between teacher j’s effects in time t on

students who have teacher j′ in the future and t−1 to avoid bias related to correlated

errors across measures within a year.

For contemporaneous outcomes, this is enough to ensure valid estimates of Ω; for

future outcomes, however, the teacher average residuals may be correlated across

years because different cohorts of students shared the same teacher in subsequent
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years. Specifically, if k and k′ are both future outcomes, we get that:14

1

J

∑
θj,t,kθ

′
j,t−1,k′ → Ωk,k′ + ζΩk̃,k̃′ (14)

where k̃ and k̃′ are the indices that correspond to the same outcomes as k and k′

measured in the concurrent year. For example, if k = k′ and corresponds to student

test scores in the year after having teacher j, the cross-year covariance between a

teacher’s average residuals on that measure converges to the sum of the variance of

the teacher effects on their students’ future test scores and the variance of the teacher

effects on their students’ current test scores times ζ.

This suggests that it is possible to recursively estimate Ω̂ by first computing 1
J

∑
θj,tθ

′
j,t−1

and then adjusting the terms corresponding to future outcome terms using the terms

corresponding to the relevant current outcomes.15 Instead, we estimate Ω for the

future outcomes directly using:

Ω̂k.k =
1

J̃

∑
∀j,j′

θj,j′,t,kθj,−j′,k′,t−1 (15)

where J̃ is the number of j, j′ pairs in the data.16

5. Back out Σν + ζΣφ using excess variance in the within-year covariances.

We start by noting that E[θj,tθ
′
j,t] = Ω + ζjΣφ + Σν + 1

Nj
Σε. We therefore estimate

Σν + ζΣφ as:

Σ̂ν + ζΣ̂φ =
1

J

∑
θj,tθ

′
j,t − Ω̂− 1

Nj
Σ̂ε (16)

14This assumes that we other measure future outcomes in the year after the students are taught by the
teacher, rather than two or three years after. A similar relationship can be computed when considering
outcomes more than one year in the future.

15This recursive approach is likely useful when considering outcomes more than one year after the students’
are taught by the teacher. Another benefit of this approach is that it can be done without knowing who the
students are linked to in the subsequent year, assuming that ζ can be estimated.

16The fact that there are two approaches to estimate a single parameter hints at the fact that it is
overidentified. One potential benefit of that is that the it would provide a way to empirically test the
assumption that students’ future teacher effectiveness is independent of their current teachers’ effectiveness.
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where J is the number of teacher-years and Nj is the number of students assigned to

teacher j and ζ = 1
J

∑
ζj .

6. Optional: Separately estimate Σν and Σφ using the within-year covariances

of students who do not share the same teacher in the subsequent year.

Similar to above, we get that E[θj,j′,tθ
′
j,−j′,t] = Ω + Σν + 1

Nj
Σε. We can estimate:

Σ̂ν =
1

J

∑
θj,j′,tθ

′
j,−j′,t − Ω̂− 1

Nj
Σ̂ε (17)

Given this estimate of Σ̂ν and the above estimate of Σν + ζΣφ, we can also back out

an estimate of Σφ. This step is only required if one wants to incorporate variation in

ζj across teachers in the construction of their empirical Bayes estimates in a similar

ways as one incorporates variation in Nj into the empirical Bayes estimates.

After estimating each of the matrices above, we can compute the full error covariance

matrix, i.e., Σ̂j = Σ̂ν + ζjΣ̂φ + 1
Nj

Σ̂ε, the optimal empirical Bayes weight matrix, i.e., Ω̂∗j =

((Σ̂j + Ω̂)−1Ω̂−1)′, and the empirical Bayes estimates for each teacher, i.e., Θ̂j = Ω̂∗jθj,t−1.

III Summarizing Teacher Effectiveness

Decision-makers often need to synthesize information on many dimensions of effectiveness

into policy decisions and researchers frequently require low-dimensional measures of teacher

effectiveness for their studies. Therefore, we discuss two natural approaches to summarize

the multiple dimensions of teacher effectiveness into a more tractable measure of “effective-

ness.” First, we optimally summarize the short-term measures with a lower-dimensional

vector, similar to principal component analysis (PCA). Second, we view the short-term

measures as statistical surrogates for a long-run outcome of interest (e.g., teacher effects

on high school graduation). While both approaches are conceptually straightforward, im-

plementing each is complicated by the fact that we do not observe the true measures of

teacher quality. When implemented correctly these approaches enable us to shed light on
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interesting questions about the production of student outcomes.

III.A Summarizing the Short-Term Effects

The aim of our first approach is to reduce the vector Θj of teacher j’s K measures of

effectiveness into a smaller vector of H measures, while minimizing loss of information

about teacher j’s effectiveness.17 This is essentially a principal component analysis (PCA),

with one notable exception. Like in many applied settings, we do not observe the “true”

measures we wish to summarize with PCA. Rather, our value-added estimates are noisy

estimates of teacher’s true effects and we need to determine how to account for this noise

in our principal components analysis.

To account for this, we use the fact that the principal components correspond to the

eigenvectors of the covariance matrix. Instead of using the covariance matrix of the empirical

Bayes estimates, which an off-the-shelf PCA analysis would do, we account for the noise

inherent in each estimate by instead using the covariance of the underlying true effects, i.e.,

Ω. Specifically, if Ω is full-rank it can be factorized into WΛW−1, where W is the matrix

of right eigenvectors and Λ is a diagonal matrix of eigenvalues. The columns of W are

then the principal components, ordered in importance by the value of the corresponding

eigenvalue, with the amount of variation explained by a component being equal to the value

of its corresponding eigenvalue divided by the sum of the eigenvalues.

In addition to optimally summarizing Θj , this factorization provides some interesting

empirical results. In particular, it allows us to determine whether teacher effectiveness can

be best summarized by teacher effects on “cognitive” vs. “non-cognitive measures” mea-

sures, as in Jackson (2018) and Petek and Pope (2018), or by teacher effects on “short-term”

vs. “long-term” outcomes, as in Gilraine and Pope (2021). More generally, our approach

allows us to better understand how well the various measures can be summarized and how

the various measures align themselves when measures of teacher effects are restricted to two

17We provide a more formal definition of “minimizing loss of information” in Appendix E, where we
provide more details about our approach.
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or three dimensions.

Finally, while the eigenvalue decomposition gives rise to weights that optimally summa-

rize teachers’ true effects and allows us to construct these weights without observing each

teachers’ true effectiveness, we still need to construct an empirical Bayes estimate of the

summary measure that results from these weights. If the optimal weights are denoted ω∗,

the empirical Bayes estimate of Θjω
∗ is just Θ̂jω

∗, where Θ̂j is the empirical Bayes estimate

of Θ. Thus, instead of re-estimating empirical Bayes estimates of the summary measures,

we can just use the empirical Bayes estimates of the underlying measures and apply the

optimal weights to this vector.18 The resulting measures still differ from those one would

obtain from conducting PCA on the empirical Bayes estimates directly (i.e., on Θ̂).19 While

subtle, we can think of this difference as the difference between “the best estimates of the

best summary of Θ”, rather than “the best summary of the best estimates of Θ.”

III.B Relationship between Short-Term Measures and Long-Term Out-

comes

Another natural approach for constructing summary measures is to view the short-term

effectiveness measures as proxies, or statistical surrogates, for teacher effects on students’

long-term outcomes, such as high school graduation or lifetime earnings (Petek and Pope

(2018); Chetty et al. (2014b)). In this case, we care about the teacher’s predicted effect on

long-term outcomes given the teacher’s short-term effects, which reduces the dimensions of

effectiveness from the number of short-term outcomes to the number of long-term outcomes.

Formally, let Θ̃j be the effect of teacher j on the long-run outcome of interest; for

18The fact that the empirical Bayes estimates of ω∗Θ are ω∗Θ̂ follows from the fact that if a m× 1 vector
x is distributed normally N(µ,Σ), then w′x ∼ N(w′µ,w′Σw) for any m× 1 vector of weights w.

19That they give different results can be seen in the fact that the covariance matrix of the empirical Bayes
estimates is Ω(Ω + Σj)

−1Ω rather than Ω. An empirical examination of the differences is in Table A.1.
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simplicity, we assume there is a single long-term outcome of interest.20 We then define:

ω∗ = arg min
ω

1

J

∑
∀j

(Θ̃j − ω′Θj)
2 (18)

which means that ω∗ = (Θ′Θ)−1Θ′Θ̃, where Θ is a J ×K matrix where the jth row is Θ′j

and Θ̃ is a J × 1 vector where the jth row is Θ̃j .

These optimal weights depend on the true short-term and long-term effects, which we

do not observe. One natural approach is to estimate ω∗ by replacing the matrix of true

effects with the matrix of empirical Bayes estimates, i.e., Θ with Θ̂, and replacing the true

long-term effect with the estimated long-term effect, i.e., Θ̃j with θ̃j . Doing so would mean

the coefficients are defined by ω̂∗ = (Θ̂′Θ̂)−1Θ̂′θ̃

In the one-dimensional setting, it is well known that these estimated weights are asymp-

totically equivalent to the optimal weights, i.e., ω∗ = ω̂∗, (Jacob and Lefgren (2008)).

However, it is not obvious from Jacob and Lefgren’s (2008) proof in the single dimension

that this result extends to the multidimensional framework, as their proof relies heavily on

the fact that in the single dimension the empirical Bayes measures are simply a shrunken

version of the raw measure, rather than a linear combination of multiple raw measures.

In Appendix F we prove that ω∗ = ω̂∗ in cases where Θj is multidimensional.21 Thus,

just as in the one-dimensional setting, researchers can use the multidimensional empirical

Bayes estimates as covariates to uncover the relationship between the dependent variable

and true teacher effects.

Importantly, this proof relies on the assumption that the same set of measures are used

to estimate value-added as appear in the subsequent regression. For example, suppose that

we observe math and ELA test scores and use these two measures to estimate value-added

20We could extend the results to when there are multiple long-run measures, but that would require us to
determine how the various long-term measures should be weighted.

21Note that the proof also assumes that θ̃j is equal to the true effect plus an error term and that the error
term is uncorrelated with Θ̂j . The assumption that the error term is uncorrelated with Θ̂j is likely wrong
if the same cohort is used to estimate θ̂j as is used to estimate Θ̂j . When using different cohorts, however,
the assumption is similar to the one that underpins the value-added framework in Section II.A.

19



Mulhern and Opper

using the multidimensional empirical Bayes approach, before running three regressions:

one that only includes the math value-added as a regressor; one that only includes ELA

value-added as a regressor; and one that includes both. The proof in Appendix F shows

that the estimated coefficients in the final regression, which includes both regressors, would

converge to the same coefficients as would be obtained if the teachers’ true value-added on

math and ELA were observed and used as covariates. In contrast, it is not necessarily the

case that the estimated coefficients from the first two regressions would converge to the

same coefficients as those from regressions based on the true value-added measures. This is

because both measures were used to compute the teachers’ value-added measures, but only

one measure appeared in the resulting regression. Similarly, if the value-added measures

were independently estimated using a single dimension empirical Bayes framework, the

coefficients on the first two regressions would be correct, in the sense that they would

converge to the same coefficients as if the true measures were observed, but the coefficients

from the last regression would not be correct. Thus, if researchers plan on using the value-

added estimates as regressors in multiple regressions, they should estimate different value-

added models depending on the set of measures they plan to use in the regressions. We

provide some numerical examples in Appendix F, which illustrate that failing to use the

appropriate value-added estimation approach can significantly bias the resulting coefficients.

This approach enables us to examine how teacher effects on various short-term out-

comes are associated with long-term teacher effects. Furthermore, we are able to shed light

on whether the observed short-term measures are sufficient to explain long-term teacher

effects, or more precisely, the fraction of variation in long-term teacher effects explained

by the observed short-term measures.22 For this, we use the year-to-year covariance of the

estimated long-term effect to estimate the true variance of the long-term effect, which we

denote as σ̂2
LT , and the covariance of the true short-term effects (rather than the covariance

of the empirical Bayes estimates).23 Specifically, we compute the percent of the long-term

22This is intimately related to the R2 measure from equation 18, but we cannot use the reported R2

because we have noisy measures of both short-term and long-term teacher effects.
23This relies on the assumption that teachers are not consistently assigned students who do better or
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variance explained by the true short-term measures as ω∗
′
Ωω∗

σ̂2
LT

, where ω∗
′

are the coefficient

estimates from equation 18.24

IV Data

We use anonymized administrative data from the New York City Department of Education

(NYCDOE), which contain information on any student who attended grades 3-8 at a public

school in New York City from the 2004-2005 school year until the 2013-2014 school year.

We henceforth refer to school years using the spring year, e.g., the 2004-2005 school year

as SY2005 or simply as 2005. The data contain yearly information about each student’s

grade-level, school attended, assigned math teacher, and assigned English teacher. They

also contain some student demographic information, including the student’s gender, whether

the student is classified as an English Language Learner (ELL), and whether the student

has been diagnosed with a learning disability.

We also observe students’ year-end math and English (ELA) test scores, as well as the

percent of days they attend school. Because tests change each year, we follow convention by

normalizing these scores by subject, grade, and year to have a mean of zero and a standard

deviation of one. To minimize the importance of outliers, we measure attendance by taking

the log number of days absent, adding one to the number of absences to ensure we can

take the log. We then multiply this by negative one so that positive values are preferred,

as with the other outcomes. In addition, we observe the numeric grades that middle school

students receive in all of their classes.

Since our focus is on teacher value-added, we drop students who are not matched to a

worse on their long-term outcomes than would be expected based on their observables. If there is sorting
on the long-term measures, the true variance of the long-term effect will be biased upward. Assuming the
short-term measures are unbiased, this would bias downward our estimates of how much variation in the
long-term effects the short-term measures can explain.

24This formula stems from two results. First, for any weights ω, the variance of ω′Θj is ω′Ωω, since
the variance of Θj is Ω. Second, the weights on the short-term measures that best explain the long-term
measure are ω∗, which stems both from the definition of a regression and the result that the coefficients
from a regression using the value-added estimates as covariates can, loosely speaking, also be thought of as
the coefficients from a regression using the true effects as covariates.
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teacher in the data. In addition, we drop the students with all non-standard grade codes;

most of these indicate separate special education classrooms, which are often exempt from

the year-end tests, and it also removes students who are part of the Collaborative Teaching

track. Together, these restrictions remove roughly 10% of the total observations. We also

correct student-to-teacher matches that appear to be misclassifications. We re-code as

missing any elementary school teacher who is assigned to more than 50 students or fewer

than 5 students in a year. For middle school, we use an upper limit of 120 students a year.

This only affects about 1.5% of the student-year observations.

Finally, since we require previous test scores to compute value-added measures, we

cannot calculate value-added measures in the first year we observe data (SY2005), so this

year is omitted from the analysis. Thus, our main analytic sample consists of students who

attended and teachers who taught in public elementary and middle schools in New York

City during 2006 to 2014. Table 1 provides summary statistics of our sample, which show

that New York City is a very diverse district, with approximately 27% Black students, 38%

Hispanic, and 18% Asian.

After restricting our sample, we observe approximately 20,000 teachers, about two-thirds

of whom are in middle school. On average, teachers are in our data for about three years;

the short time-span is largely due to limitations in the length of our panel, as the teachers

on average have been teaching in New York City for over nine years.

We look at eight outcomes over which elementary school teachers’ value-added can be

constructed. These include math test scores, ELA test scores, future math and ELA test

scores, attendance, future attendance, future math grades and future ELA grades. Most

middle school teachers in our sample do not teach both math and English, so we focus on

subject-specific outcomes.25 This gives us six potential outcomes over which we construct

teacher value-added: test scores in subject taught, future test scores, attendance, future

attendance, grades in subject taught, and future grades in subject taught.

25We focus on middle school teachers in grades 6 and 7. We omit 8th grade teachers, since we do not have
future test scores, attendance, or grades for their students.
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V Results

V.A Empirical Bayes Estimates of Teacher Effectiveness

Figures 1 and 2 summarize the empirical Bayes estimates. We have standardized the out-

comes at the student level, so a teacher who has a value-added estimate of 0.25 on some mea-

sure increases her students’ outcomes by 0.25 student standard deviations on that measure.

For most outcomes, there is meaningful variation in teacher effects. The main exception is

attendance, for which there is very little variation in the empirical Bayes estimates.26

From the empirical Bayes estimates alone, it is impossible to know how much varia-

tion actually exists in teacher effectiveness. For example, it is unclear whether the limited

variation in attendance value-added is because teachers do not affect student attendance

or because measurement error means the empirical Bayes estimates are shrunk more for

attendance than for other measures. To help shine light on this, Table 2 shows the es-

timated standard deviations of the true teacher effects rather than the empirical Bayes

estimates. Note that although we do not observe the true teacher effects directly, their

standard deviation is implied by Ω, which we can consistently estimate.

The results in Table 2 suggest there is little variation in how teachers impact student

attendance (in both elementary and middle school). While there is a reasonable amount of

variation across teachers in their average student attendance residuals (column (3) of Table

2), teachers with positive average student attendance residuals in one year are no more

likely to have positive attendance residuals in the next year than a teacher with negative

attendance residuals in the first year. This does not rule out the possibility that teachers

have a big impact on their students’ attendance; however, it suggests that their effectiveness

on this metric varies more from one year to the next than other measures. This means that

knowing a teacher’s effect on student attendance in year t−1 is less helpful when predicting

their overall effectiveness in year t than knowing their effect on other outcomes in year t−1.

Table 3 shows the correlation of teachers’ true effects across our outcomes. Although we

26This could be due to loose tracking of attendance in the administrative data during our time span,
however this would not explain why there is meaningful variation in the future attendance estimates.
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cannot directly observe true effects, we can estimate the correlations as implied from our

estimate of Ω. Effects on math and ELA tests are highly correlated, with a coefficient of

0.745. Teacher effects on current tests are also moderately correlated with effects on future

tests. In elementary school, the correlation ranges from 0.11 to 0.39 while in middle school

it is 0.88. Teacher effects on grades are also positively correlated with test score effects.

V.B The Dimensionality of Teacher Effectiveness

Next, we use principal component analysis to assess the dimensionality of teacher effects.

Figure 3 shows the proportion of variance explained by each of the principal components

(the values are reported in Table A.1). For elementary school, the first component explains

49% of the variation, and the first four components collectively explain over 93% of the

variance. In middle school, the first component explains 62% of the variation and the first

four components collectively explain 99% of the variance. These results indicate that our

initial six or eight dimensions of effectiveness can be reduced to a smaller set of dimensions

without losing much information. In both elementary and middle school, we focus on

the first four components since they cumulatively explain over 90% of the variance and

individually explain at least 5% of the variance.27

Table 4 and Figure 4 show the composition of the four main principal components in

terms of the original outcomes. For elementary school, the first component is roughly a

weighted average of all outcomes except for current attendance, which it does not weight at

all. The second component primarily differentiates between teacher effects on current test

scores, which are weighted positively, and their effects on future grades, which are weighted

negatively. The third dimension roughly separates current effects on tests scores from future

test score effects, and the fourth component appears to separate effects on math test scores

27The columns of Table A.1 highlight the importance of the methods for conducting principal compo-
nent analysis. If we had instead conducted PCA on the empirical Bayes estimates we would overstate the
importance of the first two components and understate the importance of the third through eighth ones.
Conversely, if we had used the raw measures of teacher residuals we would have understated the variance
explained by the first three components and overstated it for the 5th through 8th components. This stems
in large part from the fact that the error terms for each outcome are less correlated within teachers than
are teachers’ true effects.
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from ELA test score effects and future attendance.

For middle school teachers, the first component is primarily based on teacher effects on

grades, though effects on test scores and attendance receive some positive weight. Compo-

nent two separates teacher effects on test scores from effects on current grades. Component

three appears to separate current effects on test scores and grades from future effects on

attendance and grades, while component four appears to differentiate between future grades

and effects on current grades and future attendance. Attendance receives very little weight

in all of these components.

V.C The Relationship Between Short-term and Long-term Effects

Next, we look at how the empirical Bayes estimates of effectiveness relate to teachers’ long-

term effects on high school graduation.28 Since our PCA results show that the variation

in measures can be efficiently summarized by the first four components, we also run a

regression using the first four components as covariates. Using the short-term measures as

statistical surrogates for the long-term outcome of interest (Prentice (1989); Athey et al.

(2019); Begg and Leung (2000)) is useful for thinking about how one might want to weight

the dimensions of teacher effects when one primarily cares about long-term effects.

For this, we estimate each teacher’s long-term impact on high school graduation for the

students they taught in year t and regress that on the multidimensional empirical Bayes

estimates of their short-term impact on students’ outcomes (constructed using the students

taught in year t− 1).29 Tables summarizing these regressions are in Table A.2. In general,

they show that the first principal component of teacher effectiveness is the most predictive

28The Appendix contains results for long-term effects on earning a Regents diploma and advanced Regents
diploma.

29Here, we use standardized measures of teacher effects, so the coefficients indicate the effect of a one
standard deviation better teacher on dimension K, conditional on her effect on the other dimensions. While
these results can in theory be used to assess the predictive power of individual measures of effectiveness, we
encourage readers to instead think of them simply as indicative of a way to weight the short-term measures
of effectiveness to create a summary measure. This is because the coefficients need to be interpreted as
holding all other covariates fixed; for example, what is the impact of a teacher with a slightly higher impact
on students’ ELA scores while holding fixed their effect on students’ math scores, future ELA and math
scores, attendance, and future grades. This makes the interpretation complex and means the individual
coefficients are estimated without much precision.
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of high school graduation. For the individual empirical Bayes estimates, future attendance

and future math grades are most predictive of high school graduation. The bottom rows of

Tables A.2 and A.3 also report how much of the variation in long-term teacher effectiveness

is explained by the short-term measures. Among elementary school teachers, roughly 70

to 80% of the variation in long-term effectiveness (in terms of high school graduation or

regents diplomas) is explained by effectiveness on our short-term measures. This fraction is

smaller for middle school teachers - for whom short-term effectiveness explains about twenty

percent of the variation in long-term effectiveness - so the six middle school measures we

use may be insufficient for assessing long term effects.

V.D Does the Method of Summarizing Effectiveness Impact the Ranking

of Teachers?

We can use our results to construct summary measures of effectiveness. First, we construct

a summary measure based on the weights implied by the first principal component. Second,

we construct a summary measure based on the weights implied by the regression results

described above. Given the high correlations between the various measures, we also conduct

a third approach in which we first reduce the dimensionality using our principal component

approach and then weight these components by their relationship with long-term measures.

Overall, our estimates of teacher effectiveness are similar across the different summary

measures we consider. While the weights placed on individual measures vary across the ap-

proaches (see Figure 5 and Table A.4), the first three columns of Table 5 show that teachers

ratings are highly correlated across the three weighting approaches, both in elementary

and middle school. These summary measures are also correlated with value-added esti-

mates based on teacher effects on the non-test outcomes and traditional test value-added,

although less so than they are correlated with each other.30 Table 5 and figures A.1 and

30The non-test value-added measures are averages of teacher effects on future grades, current attendance,
future attendance, and current grades (among middle school teachers). For elementary school, test value-
added takes the teacher’s average effect on math and English tests, focusing only on the year the teacher
has the student in her class. Middle school teachers’ test value-added is based on test scores on the subject
the teacher teaches.
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A.2 show these correlations. Of note, the results suggest that the non-test measures alone

are insufficient because incorporating test scores into the value-added estimation procedure

improves the empirical Bayes estimates of non-test value-added. This is seen in the fact

that the Multi-Dimension Non-Test VA measures are strongly correlated with the weighted

summary measures, while the Single Dimension Non-Test VA measures are much less cor-

related.

Tables 6 and 7 also show the practical implications of evaluating teachers on various

summary measures. Panel A shows the expected changes, in terms of high school gradua-

tion, test scores, and non-test outcomes, if the bottom five percent of teachers are replaced

with an average teacher in terms of the relevant metric. Replacing the bottom five percent

of elementary school teachers based on the summary measures is associated with approxi-

mately 14pp higher high school graduation rates, relative to 8pp if decisions are based on

test score value-added and 11pp for non-test value-added. Naturally, if the goal is instead

to improve test scores, test score value-added will have the largest impact and similarly

with non-test outcomes.

Panel (B) in Tables 6 and 7 shows the overlap in teachers who are in the bottom five

percent on each of the metrics. In general, which measure is used for evaluation will have

different implications for individual teachers. In elementary school, there is relatively little

overlap between who is in the bottom five percent on the summary measures and who is in

the bottom for test score and non-test value-added. For example, among elementary school

teachers in the bottom five percent on test score value-added, only 17% are in the bottom

for non-test value-added and 37% are in the bottom for the eigenvalue summary measure.

Among middle school teachers, there is higher overlap (75-86%) in terms of the bottom

five percent for the summary measures and the non-test outcomes, but less overlap with

test score value-added. Thus, while different measures of teacher effectiveness are highly

correlated, which measure is used for evaluation purposes can have important consequences

for long-term outcomes and for which teachers are affected by personnel decisions.

It is worth emphasizing, however, that the results here are all in a context in which no in-
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centives are attached to attendance and grades. One natural concern is that that grades and

attendance measures are more gameable than test scores, since they are generally recorded

directly by the teacher. Although using future attendance and grades might alleviate that

issue to some extent, doing so may complicate the intra-school dynamics since it would im-

ply that a 4th grade teacher’s evaluation would depend on the 5th grade teacher’s subjective

evaluation of their students. This may have unintended consequences and we believe that

districts would, understandably, be hesitant to introduce a high-stakes evaluation that relies

on students’ grades. Even setting these issues aside, relying on future measures requires

the principal to wait additional years before being able to measure teacher effectiveness,

delaying feedback and reducing the amount of information available at the time decisions

are made. In addition, school districts may not have access to all of measures we con-

sider “non-test score measures” or, alternatively, may have access to additional measures.

Despite these challenges, the results described above suggest that test scores alone do not

sufficiently summarize teacher effectiveness. Thus, developing non-gameable measures that

adequately summarize teacher effectiveness would be quite valuable and is an important

next step in the research on teacher evaluation.

Finally, it is important to consider the implications of missing data. As the number

of measures used in teacher evaluations grows, it is more likely that some set of teachers

will be missing outcomes on at least one dimension. While it is still possible to compute

summary measures in the presence missing data, the distribution of these measures will

vary based on the number of measures observed for a given teacher.31 Importantly, in the

empirical Bayes framework, teachers who are missing more measures will be more likely to

be rated as average because their estimates will be shrunk more towards the mean. Thus, a

teacher’s likelihood of being in the bottom or top of the distribution – and perhaps subject

to rewards or punishments – will depend on the number of measures observed. Concretely,

when we randomly remove half of the observed measures from a subset of the teachers and

31In the multidimensional empirical Bayes framework, one can use the information about a teacher’s
estimated effects on the measured dimensions and estimated covariance of teacher effects across all dimensions
to compute measures of teacher effectiveness even if the teacher is missing data for some outcomes,
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re-estimate their value-added, their chance of being in the bottom 5% based on the summary

measure decreases from around 6% to less than 2%.32 Thus, any policy applications of these

measures should carefully consider how missing data are treated and fairness and efficiency

implications from using these measures in personnel decisions.

VI Conclusion

Accurately measuring the multiple dimensions of teacher effectiveness is important given

growing evidence that teacher effects are multidimensional and the use of value-added in

personnel decisions. Furthermore, it is important to figure out how to efficiently combine

multiple measures of effectiveness into summary measures that can be used for policy and

personnel decisions. Creating summary measures of effectiveness is, however, complicated

by the fact that teacher effects are measured with noise, some outcomes are unobserved,

and the error with which teacher effects are measured is correlated across outcomes.

This paper walks through the process and implications of estimating teacher value-

added in a multidimensional framework. We show that, in a multidimensional setting,

empirical Bayes estimates are not simply shrunken estimates of the raw versions, since

they incorporate information about effectiveness on other dimensions. In addition, the

multidimensional setting has implications for conducting principal component analysis and

using the empirical Bayes estimates as covariates. The methods used to compute empirical

Bayes estimates also influence estimates of the dimensionality of teacher effects and rankings

of teachers.

Using data on New York City elementary and middle school teachers, we show that much

of the variation in teacher effects, and their impacts on long-term outcomes, can be explained

in a single dimension of effectiveness. We explore three approaches for summarizing teacher

effectiveness, and all three measures lead to similar rankings of teachers. However, these

32Also of note, the fact that they have a 6% chance of being in the bottom 5% is itself a function of the
fact that we focused on teachers with the complete set of measures and they are more likely to be in the tail
of the effectiveness distribution than teachers with fewer measures.
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summary measures are only moderately correlated with traditional test score value-added,

and there is little overlap between teachers who are at the bottom five percent in terms of

the summary measures and test score value-added.

Although our focus has been on the teacher setting, there are numerous other examples

where researchers or policymakers want to efficiently summarize noisily estimated multi-

dimensional effects. These include measuring hospital or physician effectiveness, employee

productivity, and location-specific effects. All of these contexts, including the teacher set-

ting, have complications that can make policy implementation complex. It is beyond the

scope of this paper to examine, for example, how changing value-added measures may

impact teacher incentives and effectiveness. We also assume that effects were consistent

across individuals, that none of the measures were biased, and that all measures were

continuous and normally distributed. Many of these complications have been studied in

single-dimensional settings, e.g., Dinerstein and Opper (2020); Hull (2020); Delgado (2020);

Angrist et al. (2017); Gilraine et al. (2020). A natural extension is therefore to combine our

results on how to fairly measure and summarize noisily estimated multidimensional effects

with approaches for dealing with these complications. In doing so, we can implement more

efficient and fair personnel policy across a range of contexts.
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VII Tables and Figures

Table 1: Summary Statistics

Elementary School Middle School
Mean SD Mean SD

(A) Student Demographics

Asian 0.18 0.38 0.17 0.38
Black 0.26 0.44 0.28 0.45
Hispanic 0.39 0.49 0.38 0.49
White 0.16 0.37 0.15 0.36
Male 0.49 0.50 0.49 0.50
English Language Learner 0.12 0.32 0.10 0.30
Free or Reduced Price Lunch 0.79 0.40 0.80 0.40

(B) Student Achievement

Math Test Score 0.01 1.00 0.00 1.00
English Test Score -0.00 1.00 0.02 1.00
Ln(Days Absent + 1) 1.94 0.95 2.07 0.99
Math Grade 79.66 11.30 80.46 12.02
English Grade 78.63 10.59 79.14 11.32

(C) Teachers

Years Teaching at Current School 7.14 5.87 5.57 5.33
Years Teaching in the District 9.35 6.78 7.85 6.60
Male 0.14 0.34 0.24 0.43

(D) Counts

Teachers 7,077 0 13,896 0
Teacher-Years 20,707 0 48,593 0
Teacher-Subject-Years 20,868 0 52,312 0
Students 182,807 0 617,921 0
Student-Years 477,286 0 1,482,360 0
Student-Subject-Years 477,286 0 2,692,055 0

Notes: Column 1 shows the mean for elementary school teachers and students. Column 2 shows the standard deviation
for elementary school teachers and students. Column 3 shows the mean for middle school teachers and students. Column
4 shows the standard deviation for middle school teachers and students. Elementary school is defined as 5th grade and
middle school is defined as 6th - 7th grade. The means and standard deviations are weighted by the frequency with
which students and teachers appear in the sample. Test scores are standardized at the student level prior to restricting
the sample. The sample is restricted to teachers with at least ten (tested) students. Data includes students and teachers
from the 2005-06 school year through the 2013-14 school year.
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Table 2: Standard Deviations of Teacher Effects

True Empirical Raw
Measures Bayes Measures

(1) (2) (3)

(A) Elementary School

Math Test 0.204 0.153 0.314
ELA Test 0.162 0.112 0.286
Attendance 0.010 0.004 0.055
Future Math Test 0.102 0.059 0.291
Future ELA Test 0.170 0.108 0.264
Future Attendance 0.188 0.082 0.274
Future Grades Math 0.153 0.122 0.404
Future ELA Grades 0.175 0.077 0.371

(B) Middle School

Test Scores 0.177 0.126 0.271
Attendance 0.014 0.009 0.050
Current Grade 0.314 0.218 0.462
Future Test Scores 0.164 0.123 0.329
Future Attendance 0.139 0.102 0.322
Future Grade 0.217 0.151 0.490

Notes: Column 1 reports the standard deviation of true teacher effects based on the covariance matrix Ω∗. Column 2
reports the standard deviation of the empirical Bayes estimates of teacher effects. These estimates understate the true
standard deviation of teacher effects. Column 3 reports the standard deviation of the raw estimates of teacher effects
(i.e. their average student residuals). These estimates overstate the true standard deviation of teacher effects. Panel
(A) is for elementary school, defined as 5th grade. Panel (B) is based on middle school, defined as grades 6th-7th.
For middle school, test score and grade value-added are only for the one subject a teacher teaches. Elementary school
teachers teach both math and English. The units for all measures are the standard deviations of student outcomes.
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Table 3: Correlation of Teacher Effects on Various Outcomes

(A) Elementary School

Math ELA Future Future Future Future
Test Test Math ELA Future Math ELA

Scores Scores Attendance Test Test Attendance Grades Grades
(1) (2) (3) (4) (5) (6) (7) (8)

Math Test 1.000 0.745 0.097 0.107 0.389 0.059 0.331 0.145
ELA Test 0.745 1.000 0.078 0.164 0.331 0.055 0.500 0.173
Attendance 0.097 0.078 1.000 -0.282 -0.114 0.055 -0.090 -0.043
Future Math Test 0.107 0.164 -0.282 1.000 0.353 0.532 0.333 0.337
Future ELA Test 0.389 0.331 -0.114 0.353 1.000 0.440 0.799 0.466
Future Attendance 0.059 0.055 0.055 0.532 0.440 1.000 0.378 0.907
Future Grades Math 0.331 0.500 -0.090 0.333 0.799 0.378 1.000 0.451
Future ELA Grades 0.145 0.173 -0.043 0.337 0.466 0.907 0.451 1.000

(B) Middle School

Future Future Future
Test Attendance Grade Test Attendance Grade
Score in Subject Score in Subject
(1) (2) (3) (4) (5) (6)

Test Scores 1.000 0.172 0.128 0.875 0.244 0.233
Attendance 0.172 1.000 0.080 0.187 0.328 0.063
Current Grade 0.128 0.080 1.000 0.125 0.094 0.789
Future Test Scores 0.875 0.187 0.125 1.000 0.600 0.376
Future Attendance 0.244 0.328 0.094 0.600 1.000 0.456
Future Grade 0.233 0.063 0.789 0.376 0.456 1.000

Notes: These are estimates of the true correlations between teachers’ effects on each of the main outcomes. These
estimates are based on the covariance matrix Ω∗. All measures are coded so that better teachers should improve the
relevant outcome. (In particular, teacher effects on attendance is -1 * ln(Days Absent + 1).) In panel (A), Elementary
school is defined as 5th grade and teachers teach both math and ELA. In panel (B), Middle school is defined as 6th-7th
grade and test scores are for the subject the teacher teaches.
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Table 4: Composition of Principal Components

Component Component Component Component
1 2 3 4

(A) Elementary School

Math Test 0.393 0.617 0.383 -0.475
ELA Test 0.314 0.449 0.157 0.671
Attendance -0.001 0.003 0.014 -0.001
Future Math Test 0.159 -0.103 -0.009 0.101
Future ELA Test 0.440 0.010 -0.591 -0.431
Future Attendance 0.436 -0.503 0.318 -0.038
Future Grades Math 0.386 0.046 -0.537 0.348
Future ELA Grades 0.435 -0.390 0.301 0.072

(B) Middle School

Test Scores 0.144 0.625 -0.515 -0.127
Attendance 0.004 0.011 0.009 0.059
Current Grade 0.807 -0.328 -0.292 0.393
Future Test Scores 0.159 0.629 -0.029 0.138
Future Attendance 0.116 0.316 0.675 0.543
Future Grade 0.537 0.071 0.439 -0.715

Notes: This table reports the results of principal components analysis. The estimates indicate the composition of each
of the first four components, estimated separately for elementary and middle school. Elementary school is defined as
5th grade and middle school is 6th-7th grade. For middle school, test scores and grades are for the one subject taught
by the relevant teacher. Elementary school teachers teach both math and English, so additional outcomes are used for
these teachers.
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Table 5: Correlation of Estimates of Teacher Effectiveness

Weighted Summary Measures Empirical Bayes Estimates

PCA PCA Multi Single Multi Single
First Regression Regression Dimension Dimension Dimension Dimension

Eigenvalue Coefficients Coefficients Test VA Test Non-Test Non-Test
(1) (2) (3) (4) (5) (6) (7)

(A) Elementary School

PCA First Eigenvalue 1.000 0.929 0.944 0.698 0.510 0.821 0.615
PCA Regression 0.929 1.000 0.962 0.403 0.263 0.923 0.683
Regression 0.944 0.962 1.000 0.503 0.366 0.903 0.703
Multidim Test VA 0.698 0.403 0.503 1.000 0.617 0.297 0.159
Single Dim Test VA 0.510 0.263 0.366 0.617 1.000 0.133 0.183
Multidim Non-Test VA 0.821 0.923 0.903 0.297 0.133 1.000 0.550
Single Dim Non-Test VA 0.615 0.683 0.703 0.159 0.183 0.550 1.000

(B) Middle School

PCA First Eigenvalue 1.000 0.946 0.847 0.246 0.177 0.950 0.798
PCA Regression 0.946 1.000 0.965 0.496 0.330 0.931 0.793
Regression 0.847 0.965 1.000 0.589 0.385 0.872 0.772
Multidim Test VA 0.246 0.496 0.589 1.000 0.485 0.244 0.171
Single Dim Test VA 0.177 0.330 0.385 0.485 1.000 0.102 0.199
Multidim Non-Test VA 0.950 0.931 0.872 0.244 0.102 1.000 0.715
Single Dim Non-Test VA 0.798 0.793 0.772 0.171 0.199 0.715 1.000

Notes: These estimates show the correlation between different measures of teacher effectiveness. The first three columns
are based on the weighted summary measures of teacher effectiveness. Column 1 is based on the weights (coefficients) from
a regression of teacher effects on high school graduation on the empirical Bayes estimates of teacher effects on individual
outcomes. Column 2 is based on weights from a regression of teacher effects on high school graduation on the first four
components from principal components analysis. Column 3 is based on weights from the first eigenvalue from principal
components analysis. Column 4 is based on our estimate of teacher effects on test scores in the multidimensional setting.
Column 5 is based on traditional estimates of teacher effects on test scores in the single dimension setting. Column 6 is
based on our estimates of teacher effects on non-test score outcomes in the multidimensional setting. Column 7 is based on
estimates of teacher effects on non-test outcomes in the single dimension setting. Non-test score empirical Bayes estimates
are based on teacher effects on attendance, future attendance, future grades (and current grades for middle school). This
measure equally weights teacher effects on these four outcomes. Panel (A) is based on elementary school teachers (grade
5) and panel (B) table is based on middle school teachers (grades 6-7). For elemenatry school, test VA is an average of the
teacher’s effect on math and ELA. For middle school, test VA is for the subject taught by the relevant teacher.
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Table 6: Elementary School: Implications of Changing Evaluation Measures

Weighted Summary Measures Empirical Bayes Estimates

Test Non-Test
First PCA Reg Value- Value-

Eigenvalue Reg Added Added
(1) (2) (3) (4) (5)

(A) Projected Change in Outcomes from Replacing Bottom 5% with Mean Teacher

HS Graduation 0.149 0.145 0.142 0.078 0.111

Test Scores 0.524 0.203 0.230 0.907 0.207

Non-Test Outcomes 0.782 0.801 0.981 0.303 1.071

(B) Percent of Bottom 5% on Column VA also in Bottom 5% on Row VA

HS Graduation 0.234 0.192 0.215 0.168 0.178

Test Scores 0.374 0.182 0.201 1.000 0.159

Non-Test Outcomes 0.467 0.481 0.696 0.159 1.000

Eigenvalue Summary 1.000 0.687 0.617 0.374 0.467

Notes: The estimates in Panel (A) show the differences in projected outcomes (high school graduation, test scores and
non-test outcomes) for average teachers and those in the bottom 5% as ranked in terms of the value-added measure
from the relevant column. The estimates in Panel (B) show the fraction of teachers in the bottom 5% in terms of the
value-added metrics in the relevant row who are also in the bottom 5% in terms of the column’s value-added metric.
The first five columns are based on the weighted summary measures of teacher effectiveness. Column 1 is based on
weights from the first eigenvalue from principal components analysis. Column 2 is based on weights from a regression
of teacher effects on high school graduation on the first four components from principal components analysis. Column
3 is based on the weights (coefficients) from a regression of teacher effects on high school graduation on the empirical
Bayes estimates of teacher effects on individual outcomes. Column 4 is based on traditional estimates of teacher effects
on test scores in the single dimension setting. Column 5 is based on estimates of teacher effects on non-test outcomes
in the single dimension setting. Non-test score empirical Bayes estimates are based on teacher effects on attendance,
future attendance, future grades in subject and future grades in other subjects. This measure equally weights teacher
effects on these four outcomes. This table is based on elementary school teachers (grade 5) and test score measurse are
based on averages across math and reading.
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Table 7: Middle School: Implications of Changing Evaluation Measures

Weighted Summary Measures Empirical Bayes Estimates

PCA PCA Test Non-Test
First Regression Regression Value- Value-

Eigenvalue Coefficients Coefficients Added Added
(1) (2) (3) (4) (5)

(A) Projected Change in Outcomes from Replacing Bottom 5% with Mean Teacher

HS Graduation 0.100 0.109 0.100 0.089 0.104

Test Scores 0.329 0.564 0.555 1.591 0.408

Non-Test Outcomes 0.993 1.028 1.030 0.214 1.147

(B) Percent of Bottom 5% on Column VA also in Bottom 5% on Row VA

HS Graduation 0.138 0.151 0.146 0.215 0.182

Test Scores 0.137 0.206 0.207 1.000 0.176

Non-Test Outcomes 0.651 0.708 0.723 0.176 1.000

Eigenvalue Summary 1.000 0.757 0.604 0.137 0.651

Notes: The estimates in Panel (A) show the differences in projected outcomes (high school graduation, test scores and
non-test outcomes) for average teachers and those in the bottom 5% as ranked in terms of the value-added measure
from the relevant column. The estimates in Panel (B) show the fraction of teachers in the bottom 5% in terms of the
value-added metrics in the relevant row who are also in the bottom 5% in terms of the column’s value-added metric.
The first three columns are based on the weighted summary measures of teacher effectiveness. Column 1 is based on the
weights (coefficients) from a regression of teacher effects on high school graduation on the empirical Bayes estimates of
teacher effects on individual outcomes. Column 2 is based on weights from a regression of teacher effects on high school
graduation on the first four components from principal components analysis. Column 3 is based on weights from the
first eigenvalue from principal components analysis. Column 4 is based on traditional estimates of teacher effects on test
scores in the single dimension setting. Column 5 is based on estimates of teacher effects on non-test outcomes in the
single dimension setting. Non-test score empirical Bayes estimates are based on teacher effects on attendance, future
attendance, current grades, and future grades. This measure equally weights teacher effects on these four outcomes.
This table is based on middle school teachers (grades 6-7) and test score measurse are based on the subject a teacher
teaches.
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Figure 1: Distribution of Empirical Bayes Estimates for Elementary School Teachers

0
2

4
6

De
ns

ity

-.5-.25 0 .25 .5
EB estimate in SDs of Outcome 

(A) Math Test

0
2

4
6

De
ns

ity

-.5-.25 0 .25 .5
EB estimate in SDs of Outcome 

(B) ELA Test 

0
1

2
3

4
5

De
ns

ity
-.5-.25 0 .25 .5

EB estimate in SDs of Outcome 

(C) Future Math Test

0
2

4
6

De
ns

ity

-.5-.25 0 .25 .5
EB estimate in SDs of Outcome 

(D) Future ELA Test 

0
20

40
60

80
10

0
De

ns
ity

-.5-.25 0 .25 .5
EB estimate in SDs of Outcome 

(E) Attendance

0
2

4
6

8
De

ns
ity

-.5 -.25 0 .25 .5
EB estimate in SDs of Outcome 

(F) Future Attendance

0
2

4
6

8
De

ns
ity

-.5 -.25 0 .25 .5
EB estimate in SDs of Outcome 

(G) Future Math Grades

0
2

4
6

De
ns

ity

-.5 -.25 0 .25 .5
EB estimate in SDs of Outcome 

(H) Future ELA Grades

Notes: The figures above show the distribution of the multidimensional empirical Bayes
estimates of teacher effects on individual outcomes for elementary school (5th grade). All
estimates are in standard deviations of the outcome measure (standardized at the student
level before computing teacher effects). Panels A, B and E are based on student outcomes
in the year they are taught by the focal teacher. The remaining panels are based on student
outcomes in the year following assignment to the focal teacher. Elementary school teachers
teach both math and ELA.
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Figure 2: Distribution of Empirical Bayes Estimates for Middle School Teachers
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Notes: The figures above show the distribution of the multidimensional empirical Bayes
estimates of teacher effects on individual outcomes for middle school (6th - 7th grade). All
estimates are in standard deviations of the outcome measure (standardized at the student
level before computing teacher effects). Panels A, B, and C are based on student outcomes
in the year they are taught by the focal teacher. The remaining panels are based on student
outcomes in the year following assignment to the focal teacher. Middle school teachers
typically teach one grade so test score effects reflect the relevant subject.
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Figure 3: Scree Plot of Eigenvalues
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Notes: The figures above show the percent of variance in teacher effects on our student
outcome measures explained by each principal component. These estimates come from
conducting principal component analysis on the true measures of teacher effects. Panel (A)
is for elementary school and is based on eight student outcome measures. Panel (B) is for
middle school and is based on six student outcome measures.
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Figure 4: PCA Components
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Notes: The figures above show the relative weight each student outcome receives in each of
the four main principal components. For middle school (in panel B) test scores and grades
refer to the subject taught by the focal teacher. In elementary school (panel A) teachers
teach both math and ELA. The principal components in panels A and B are not the same, in
part because they are based on different sets of outcomes. For both middle and elementary
school, the first four principal components each individually explain at least five percent of
the variation in teacher effects on the relevant outcomes.

45



Mulhern and Opper

Figure 5: Composition of Weights
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Notes: The figures above show the relative weights placed on each individual outcome for
each of our three main approaches for creating summary measures of teacher effectiveness.
The first approach (represented by the green bars) uses the first eigenvalue from principal
component analysis to combine teacher effects on the outcomes into a summary measure.
The height of the green bars shows the extent to which each individual outcome contributes
to the summary measure. The second approach (orange bars) uses the coefficients from
a regression of high school graduation on the four PCA components to weight individual
outcomes in a summary measure. The third approach (navy bars) uses the coefficients from
a regression of high school graduation on the empirical Bayes estimates of the individual
outcomes as weights. Panel (A) shows the weights for elementary school teachers and panel
(B) shows them for middle school teachers.
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A Additional Tables and Figures

Table A.1: PCA: Proportion of Variance Explained by Components

True Empirical Raw
Measures Bayes Measures

(1) (2) (3)

(A) Elementary School

Component 1 0.487 0.618 0.423
Component 2 0.279 0.278 0.191
Component 3 0.113 0.053 0.105
Component 4 0.052 0.027 0.089
Component 5 0.045 0.014 0.075
Component 6 0.015 0.008 0.068
Component 7 0.008 0.001 0.046
Component 8 0.000 0.000 0.002

(B) Middle School

Component 1 0.616 0.641 0.473
Component 2 0.256 0.278 0.200
Component 3 0.095 0.074 0.154
Component 4 0.028 0.006 0.113
Component 5 0.005 0.001 0.057
Component 6 0.001 0.000 0.002

Notes: These estimates indicate the proportion of variance explained by each component when conducting principal
components analysis on the true measures of teacher effects (in column 1), the empirical Bayes measures (in column 2)
and the raw measures of teacher effects. For elementary school, PCA is conducted on eight outcomes, and for middle
school it is conducted on six outcomes.
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Table A.2: Regression Results: Predictors of High School Graduation

Elementary School Middle School

Principal Individual Principal Individual
Components Measures Components Measures

(1) (2) (3) (4)

(A) Principal Components

First Component 0.029∗∗∗ 0.016∗∗∗

(0.003) (0.001)
Second Component -0.015∗∗∗ 0.010∗∗∗

(0.004) (0.001)
Third Component 0.001 0.003∗∗∗

(0.003) (0.001)
Fourth Component 0.000 -0.005∗∗∗

(0.002) (0.001)

(B) Individual Measures

Math Test 0.004
(0.006)

ELA Test 0.007
(0.008)

Test Score 0.016
(0.010)

Attendance -0.011∗ -0.007∗∗∗

(0.007) (0.002)
Current Grade in Subject -0.001

(0.005)
Future Math Test -0.012

(0.016)
Future ELA Test -0.001

(0.005)
Future Test Score -0.009

(0.014)
Future Attendance 0.041 0.009

(0.030) (0.008)
Future Grade Math 0.013

(0.010)
Future Grade ELA -0.021

(0.026)
Future Grade in Subject 0.015∗∗

(0.006)
N 3,042 3,042 16,239 16,239

Notes: (* p<.10 ** p<.05 *** p<.01). Each observation is a teacher-subject-year. Columns 1 and 3 use the em-
pirical Bayes estimates of the components that result from conducting PCA on the true measures of teacher effects.
Columns 2 and 4 are based on the empirical Bayes estimates of effectiveness in terms of individual outcomes. Mea-
sures are standardized so that the coefficient represents the effect of a one standard deviation better teacher (in
terms of that measure). The coefficients are from a regression of teacher effects on high school graduation for cohort
+1onteachereffectsonshort−termoutcomesforcohort. We can only estimate teacher effects on high school graduation
for 5th grade teachers in 2006 and 2007, and for middle school teachers in 2006-2010. Standard errors are clustered at
the teacher-level.
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Table A.3: Regression Results: Predictors of Regents Diplomas

Elementary School Middle School

Regents Diploma Advanced Regents Regents Diploma Advanced Regents
(1) (2) (3) (4)

(A) PCA Components

First Component 0.031∗∗∗ 0.034∗∗∗ 0.015∗∗∗ 0.013∗∗∗

(0.003) (0.003) (0.001) (0.001)
Second Component -0.015∗∗∗ -0.013∗∗∗ 0.010∗∗∗ 0.016∗∗∗

(0.004) (0.003) (0.001) (0.001)
Third Component 0.002 0.001 0.003∗∗∗ -0.005∗∗∗

(0.003) (0.003) (0.001) (0.001)
Fourth Component -0.002 -0.005∗∗ -0.005∗∗∗ -0.001

(0.002) (0.002) (0.001) (0.001)

(B) Individual Measures

Math Test Score 0.005 0.005
(0.006) (0.006)

ELA Test Score 0.007 0.011
(0.008) (0.007)

Test Score 0.023∗∗ 0.010
(0.010) (0.007)

Attendance -0.012∗ -0.015∗∗ -0.009∗∗∗ -0.001
(0.006) (0.006) (0.002) (0.002)

Current Grade in Subject 0.000∗∗ 0.004
(0.005) (0.004)

Future Math Test - 0.010 - 0.007
(0.015) (0.013)

Future ELA Test 0.003 0.007
(0.005) (0.005)

Future Test Score -0.019 0.010
(0.013) (0.010)

Future Attendance 0.039 0.052∗∗ 0.015∗ -0.002
(0.030) (0.023) (0.008) (0.005)

Future Grade in Subject 0.012∗ 0.004
(0.006) (0.004)

Future Math Grade 0.005 0.003
(0.010) (0.006)

Future ELA Grade -0.018 -0.034∗

(0.026) (0.019)

N 3,042 3,042 16,239 16,239

Notes: (* p<.10 ** p<.05 *** p<.01). Each observation is a teacher-subject-year. Panel (A) uses the empirical Bayes
estimates of the components that result from conducting PCA on the true measures of teacher effects. Panel (B) is
based on the empirical Bayes estimates of effectiveness in terms of individual outcomes. Measures are standardized so
that the coefficient represents the effect of a one standard deviation better teacher (in terms of that measure). The
coefficients are from a regression of teacher effects on high school graduation for cohort +1onteachereffectsonshort−
termoutcomesforcohort. We can only estimate teacher effects on high school graduation and regents diplomasfor 5th
grade teachers in 2006 and 2007, and for middle school teachers in 2006-2010. Standard errors are clustered at the
teacher-level.
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Table A.4: Composition of Weights

Unstandardized Weights Standardized Weights
First PCA First PCA

Eigenvalue Regression Regression Eigenvalue Regression Regression
(1) (2) (3) (4) (5) (6)

(A) Elementary School

Math Test 14.290 -11.670 0.142 13.634 -10.332 0.151
ELA Test 13.618 9.244 2.154 10.276 6.473 1.808
Attendance 33.044 50.465 23.878 28.835 40.864 23.176
Future Math Test 22.429 33.027 14.717 15.905 21.732 11.608
Future ELA Test -24.247 -41.447 -15.458 -1.237 -1.963 -0.878
Future Attendance 14.737 26.172 32.063 8.367 13.789 20.249
Future Math Grade 6.114 11.733 27.438 5.682 10.118 28.362
Future ELA Grade 20.015 22.476 15.067 18.538 19.318 15.523

(B) Middle School

Test Scores 3.105 13.257 18.959 2.523 13.824 20.030
Attendance 16.690 24.112 16.788 1.090 2.021 1.426
Current Grade 47.259 25.169 14.917 68.178 46.601 27.983
Future Test Scores 4.201 11.973 13.799 3.165 11.579 13.521
Future Attendance 10.189 14.469 19.432 6.494 11.836 16.105
Future Grade 18.557 11.020 16.105 18.550 14.138 20.935

Notes: This table shows how much each individual component is weighted in our three main weighting approaches. Each
observation is a teacher-subject-year. Columns 1 and 4 contain weights based on the first eigenvalue from principal
components analysis. Columns 2 and 5 contain weights based on the coefficients from a regression of teacher effects
on high school graduation on the first four components from principal components analysis. Columns 3 and 6 contains
weights based on the coefficients from a regression of teacher effects on high school graduation on the empirical Bayes
estimates of teacher effects on individual outcomes. The weights in columns 4 to 6 are standardized to account for the
variation in teacher effects on each of the outcomes. The weights for elementary school (5th grade) are in panel A and
those for middle school (6th-7th grade) are in panel B.
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Table A.5: Weights based on Predicting Regents Diploma and Advanced Regents

Unstandardized Weights Standardized Weights

Regents Diploma Advanced Regents Regents Diploma Advanced Regents

PCA Regression PCA Regression PCA Regression PCA Regression
Regression Coefficients Regression Coefficients Regression Coefficients Regression Coefficients

(1) (2) (3) (4) (5) (6) (7) (8)

(A) Elementary School

Math Test -8.159 4.994 -2.414 10.946 -7.291 5.326 -2.201 11.281
ELA Test 10.042 1.322 11.508 0.314 7.098 1.115 8.297 0.256
Attendance 52.099 26.899 55.594 37.070 42.581 26.235 46.348 34.942
Future Math Test 32.519 15.808 31.887 22.697 21.599 12.529 21.603 17.386
Future ELA Test -39.902 -14.782 -37.036 -19.402 -1.907 -0.843 -1.806 -1.070
Future Attendance 25.100 31.198 23.491 29.048 13.348 19.798 12.742 17.816
Future Math Grade 7.550 18.041 -0.327 15.795 6.571 18.739 -0.291 15.856
Future ELA Grade 20.751 16.520 17.298 3.532 18.002 17.102 15.307 3.534

(B) Middle School

Test Scores 13.707 19.518 25.643 37.065 14.404 22.324 29.826 38.399
Attendance 24.128 23.940 24.077 13.199 2.038 2.201 2.251 1.099
Current Grade 24.372 14.295 13.978 14.101 45.477 29.033 28.868 25.938
Future Test Scores 12.310 10.604 16.472 19.571 11.998 11.249 17.769 18.804
Future Attendance 14.652 18.309 13.672 10.212 12.078 16.429 12.475 8.299
Future Grade 10.832 13.334 6.158 5.853 14.005 18.764 8.812 7.461

Notes: This table shows the weights from the PCA regression and regression approach when use Regents Diploma
receipt or Advanced Regents Diploma as the long-term outcome of interest. Each observation is a teacher-subject-year.
Columns 1 and 5 contain weights based on the coefficients from a regression of teacher effects on Regents diploma
receipt on the first four components from principal components analysis. Columns 2 and 6 contain weights based on
the coefficients from a regression of teacher effects on Regents diploma receipt on the empirical Bayes estimates of
teacher effects on individual outcomes. Columns 3 and 7 contain weights based on the coefficients from a regression of
teacher effects on earning an Advanced Regents diploma receipt on the first four components from principal components
analysis. Columns 4 and 8 contain weights based on the coefficients from a regression of teacher effects on earning an
Advanced Regents diploma on the empirical Bayes estimates of teacher effects on individual outcomes. The weights in
columns 5 through 8 are standardized to account for the variation in teacher effects on each of the eight outcomes.

Table A.6: Correlation between Multidimensional and Single Dimension Empirical Bayes
Estimates

Math ELA Future Future Future Future
Test Test Math ELA Future Math ELA

(A) Elementary School Scores Scores Attendance Test Test Attendance Grades Grades

Correlation 0.597 0.326 0.113 0.287 0.419 0.333 0.441 0.507

Future Future Future
Test Attendance Grade Test Attendance Grade

(B) Middle School Scores in Subject Scores in Subject

Correlation 0.365 0.088 0.766 0.444 0.405 0.656

Notes: Panel A is based on elementary school (5th grade) teachers and panel B is based on middle school teachers
(6th-7th grade). Estimates indicate the correlation between the single and multidimensional empirical Bayes’ estimates
of teacher effects on the noted outcome. The multidimensional empirical Bayes estimates incorporate information about
teacher effects on and the noisiness of other outcomes.
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Table A.7: Spearman Correlations of Estimates of Teacher Effectiveness

Weighted Summary Measures Empirical Bayes Estimates

PCA PCA Multi Single Multi Single
First Regression Regression Dimension Dimension Dimension Dimension

Eigenvalue Coefficients Coefficients Test VA Test Non-Test Non-Test
(1) (2) (3) (4) (5) (6) (7)

(A) Elementary School

PCA First Eigenvalue 1.000 0.922 0.940 0.701 0.625 0.838 0.782
PCA Regression 0.922 1.000 0.960 0.409 0.336 0.955 0.873
Regression 0.940 0.960 1.000 0.504 0.454 0.933 0.890
Multidim Test VA 0.701 0.409 0.504 1.000 0.941 0.292 0.274
Single Dim Test VA 0.625 0.336 0.454 0.941 1.000 0.218 0.206
Multidim Non-Test VA 0.838 0.955 0.933 0.292 0.218 1.000 0.933
Single Dim Non-Test VA 0.782 0.873 0.890 0.274 0.206 0.933 1.000

(B) Middle School

PCA First Eigenvalue 1.000 0.946 0.849 0.255 0.272 0.967 0.934
PCA Regression 0.946 1.000 0.964 0.490 0.468 0.945 0.923
Regression 0.849 0.964 1.000 0.586 0.550 0.883 0.896
Multidim Test VA 0.255 0.490 0.586 1.000 0.931 0.244 0.236
Single Dim Test VA 0.272 0.468 0.550 0.931 1.000 0.222 0.238
Multidim Non-Test VA 0.967 0.945 0.883 0.244 0.222 1.000 0.961
Single Dim Non-Test VA 0.934 0.923 0.896 0.236 0.238 0.961 1.000

Notes: These estimates show the Spearman rank correlations between different measures of teacher effectiveness. (This
is a non-parametric estimate of the association between two measures.) The first three columns are based on the
weighted summary measures of teacher effectiveness. Column 1 is based on the weights (coefficients) from a regression
of teacher effects on high school graduation on the empirical Bayes estimates of teacher effects on individual outcomes.
Column 2 is based on weights from a regression of teacher effects on high school graduation on the first four components
from principal components analysis. Column 3 is based on weights from the first eigenvalue from principal components
analysis. Column 4 is based on our estimate of teacher effects on test scores in the multidimensional setting. Column
5 is based on traditional estimates of teacher effects on test scores in the single dimension setting. Column 6 is based
on our estimates of teacher effects on non-test score outcomes in the multidimensional setting. Column 7 is based
on estimates of teacher effects on non-test outcomes in the single dimension setting. Non-test score empirical Bayes
estimates are based on teacher effects on attendance, future attendance, future grades, (and current grades for middle
school). This measure equally weights teacher effects on these four outcomes. Panel (A) is based on elementary school
teachers (grade 5) and panel (B) table is based on middle school teachers (grades 6-7). For elemenatry school, test
VA is an average of the teacher’s effect on math and ELA. For middle school, test VA is for the subject taught by the
relevant teacher.
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Figure A.1: Elementary School: Correlation between Teacher Ratings on Different Measures
of Effectiveness
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Notes: These figures show the correlations between elementary school teachers’ ratings
on our summary measures of effectiveness and traditional single dimensions value-added
measures based on test scores or non-test score measures. In panels (A) and (B), the y-axis
is based on the weights from the first eigenvalue from principal component analysis. The y-
axis in panels (C) and (D) is based on the (PCA regression) approach which uses the weights
from a regression of high school graduation on the four PCA components. In panels (E) and
(F), the y-axis shows the summary measure based on a regression of high school graduation
on the empirical Bayes estimates of the individual outcomes. Panels (C) and (E) look at
correlations with test score value-added and Panels (D) and (F) look at correlations with
non-test value-added. The dots represent the standardized ratings for individual teachers
and the red lines show the relationship between the two relevant measures. These figures
are for elementary school teachers who teach fifth grade.
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Figure A.2: Middle School: Correlation between Teacher Ratings on Different Measures of
Effectiveness
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Notes: These figures show the correlations between middle school teachers’ ratings on our
summary measures of effectiveness and traditional single dimensions value-added measures
based on test scores or non-test score measures. In panels (A) and (B), the y-axis is based
on the weights from the first eigenvalue from principal component analysis. The y-axis in
panels (C) and (D) is based on the (PCA regression) approach which uses the weights from
a regression of high school graduation on the four PCA components. In panels (E) and
(F), the y-axis shows the summary measure based on a regression of high school graduation
on the empirical Bayes estimates of the individual outcomes. Panels (C) and (E) look at
correlations with test score value-added and Panels (D) and (F) look at correlations with
non-test value-added. The dots represent the standardized ratings for individual teachers
and the red lines show the relationship between the two relevant measures. These figures
are for middle school teachers who teach sixth and seventh.
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Figure A.3: Scree Plot of Eigenvalues
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Notes: The figures above show the percent of variance in teacher effects on our student
outcome measures explained by each principal component. These estimates come from
conducting principal component analysis on four covariance matrices: C1, C2, C3, C4,
where Ck is the covariance between Θj,t and Θj,t−k. Panel (A) is for elementary school and
is based on eight student outcome measures. Panel (B) is for middle school and is based on
six student outcome measures.
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Figure A.4: PCA Components

0
.1

.2
.3

.4
.5

PC
A 

W
ei

gh
t

Math
Test

ELA
Test

Future
Math
Test

Future
ELA
Test

AttendanceFuture
Attendance

Math
Grades

ELA
Grades

(A) Elementary School
0

.2
.4

.6
.8

PC
A 

W
ei

gh
t

Test Attendance Current
Grades

Future
Test

Future
Attendance

Future
Grades

(B) Middle School

First Covariance Second Covariance
Third Covariance Fourth Covariance

Notes: The figures above show the relative weight each student outcome receives in each of
the first main principal components. For middle school (in panel B) test scores and future
grades refer to the subject taught by the focal teacher. In elementary school (panel A)
teachers teach both math and ELA. The principal components in panels A and B are not
the same, in part because they are based on different sets of outcomes. For both middle
and elementary school, we show the first principal component for each of the following four
covariance matrices: C1, C2, C3, and C4, where Ck is the covariance between Θj,t and
Θj,t−k.
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Figure A.5: Comparing the Missing Data Approaches
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Notes: The figure above shows three empirical Bayes distributions. All three are a weighted
average of the empirical Bayes estimates of all the effectiveness measures, with the weights
estimated using the PCA Regression approach defined in Section II. They differ in how
the missing observations are handled. The “No Imputation” method uses the approach
defined in Section D. The other two approaches imputes the missing data and then estimates
the empirical Bayes estimates as if none of the observations were missing. The “Impute
Missing as Overall Mean” imputes the missing data at the overall mean and the “Impute
Missing as Linear Prediction” imputes the missing observations as the best linear predictions
conditional on the observed outcomes.
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B Framework with Teacher Value-Added Drift

B.1 Model with Drift

In our main analysis, we assumed that teachers do not get more or less effective over time;

instead, any teacher’s effect on their students’ outcomes is a combination of the teacher’s

persistent effectiveness and a year-specific shock. We now present the model in which there

is drift and discuss how that changes the interpretation of the results; the model also informs

the discussion in Section ?? of how to include multiple years of teacher effectiveness in the

predictions.

As before, we can write the statistical model of student outcomes as:

yi,t−1 = βXi,t−1 + Θj,t−1 + νj,t−1 + εi,t−1 (19)

where Xi,t−1 are the student’s characteristics, Θj,t−1 is the effect of the teacher on her out-

comes, and both νj,t−1 and εi,t−1 are normally distributed error terms that represent the

classroom and individual-shock, respectively. Note that we are slightly abusing notation

here, in that before νj,t−1 denoted the classroom shocks caused by both idiosyncratic shocks

to the teachers’ effectiveness and classroom shocks that have other causes and here νj,t−1

only corresponds to classroom shocks caused by factors other than the teachers’ effective-

ness.

Defining a teacher’s value-added in year t− 1 as we do in Equation (4) and continuing

to denote these estimates θj,t−1, from this statistical model we get that if β̂ → β:

θj,t−1|Θj,t−1 ∼ N
(

Θj,t−1,Σν +
1

Nj
Σε

)
(20)

If we assume that Θj,t−1 ∼ N(0,Ω), we can then use Bayes’ Law as before to show that:

Θj,t−1|θj,t−1 ∼ N
(

Ω∗jθj,t−1,Σ
∗
j

)
(21)

where again

Ω∗j = (Σ−1
j + Ω−1)−1Σ−1

j

Σ∗j = (Σ−1
j + Ω−1)−1

The challenge is that we do not want the posterior distribution of Θj,t−1 conditional

on θj,t−1 and instead want the posterior of Θj,t conditional on θj,t−1. To calculate this

posterior, we need to augment that model by specifying how Θj,t−1 is linked to Θj,t.

In the Section II.A, we linked Θj,t−1 and Θj,t by assuming that both are equal to some
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permanent component of teacher effectiveness and a year specific shock. We now relax that

assumption and only assume that Θj,t evolves in a stationary Gaussian process. That is,

we assume that: [
Θj,t

Θj,t−1

]
∼ N

([
0

0

]
,

[
Ω C1

C1 Ω

])
(22)

for every t. Here Ω equals the variance of Θj,t, while before we used it to only denote

the persistent component of teacher effectiveness, and C1 equals the covariance of Θj,t

and Θj,t−1. Our assumption that they evolve in a Gaussian process implies that their

joint distribution is distributed according to a multivariate normal distribution and the

assumption that it’s stationary implies that the variance and covariance of this distribution

do not depend on t.

From this model, we get that:

Θj,t|Θj,t−1 ∼ N
(
C1Ω−1Θj,t−1,Ω− C1Ω−1C1

)
(23)

which follows from the fact that conditioning on a portion of the observations in a multi-

variate normal distribution still results in a multivariate normal distribution. Our earlier

assumption that Θj,t consists of a persistent component and year-specific shock, which we

ignored when computing Ω, meant that C1 = Ω. That meant that Θj,t|Θj,t−1 ∼ N
(
Θj ,0

)
,

which is why we were able to ignore this step in the derivations used in the main body of

the paper.

We can then combine Equations (23) and (21) to get that:33

Θj,t|θj,t−1 ∼ N
(
C1Ω−1Ω∗jθj,t−1,Ω− C1Ω−1C1 + C1Ω−1Σ∗j

)
(24)

Substituting in the fact that Ω∗j = Ω(Ω+Σj)
−1, we get that the empirical Bayes estimates

in a model with drift are the mean posterior, or:

Θ̂j,t = C1(Ω + Σj)
−1θj,t−1 (25)

33To see why this is true, we can write Θj,t = C1Ω−1Θj,t−1 + ε and Θj,t−1 = Ω∗jθj,t−1 + η, where ε and
η are mean-zero and normally distributed error terms; these error terms are not to be confused with the ε
and η error terms defined in the paper above and are instead placeholders for the error terms implied by
the distributions of Θj,t|Θj,t−1 and Θj,t−1|θj,t−1. We can then combine these equations to get that Θj,t =
C1Ω−1Ω∗jθj,t−1 + C1Ω−1η+ ε. Note that θj,t−1 is independent from ε since Θj,t|Θj,t−1, θj,t−1 = Θj,t|Θj,t−1.
We therefore get that Θj,t|θj,t−1 is distributed normally with mean C1Ω−1Ω∗jθj,t−1 and variance defined by
the variance of C1Ω−1η + ε.
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B.2 Interpretation of Estimates

In the paper, we framed the results in a model without drift. We now briefly discuss how

the interpretation changes in our model with drift in teacher effectiveness. To ease the

comparison, we will put a bit more structure on the nature of the drift and assume that the

teacher effects can be decomposed into three components: a persistent effect Θj , a time-

varying effect denoted φj,t, and a year-specific shock ηj,t. We will further assume that the

time-varying component evolves according to a stationary AR(1) process, so φj,t = ρφj,t−1+

φ̃j,t for ρ ∈ (0, 1) and an idiosyncratic error term φ̃j,t. Assuming the three components are

independent, we then get that Ω = V
(
Θj

)
+ V

(
φj,t
)

+ V(ηj,t) and C1 = V
(
Θj

)
+ ρV

(
φj,t
)

Our results regarding the dimensionality of teacher effectiveness therefore incorrectly

attempted to explain how well Θj + ρφj,t−1 could be summarized by a lower dimensional

vector rather than Θj + φj,t−1. However, these differ only by (1 − ρ)V
(
φj,t
)
. Unless most

of the variation in teacher effectiveness is generated by the time-varying component (i.e.

V
(
φj,t
)

is much bigger than V(Θj), ρ is much smaller than one, and the variance structure

of Θj is quite different than the variance structure of φj,t−1 the results are likely to be

similar.

Furthermore there is also a conceptual justification for using the model without drift

for our purposes. Fundamentally, Θj + ρφj,t−1 is the only part of the teachers’ effectiveness

in year t that is knowable in year t − 1. Just as we ignored the year-specific shock ηj,t

when exploring how well teacher effectiveness can be explained by a lower dimensional

vector, one could argue that we should only be concerned with how well Θj + ρφj,t−1 can

be summarized rather than Θj + φj,t−1. From that perspective, it is actually C1 that we

want to explain, rather than Ω, and the approach we use in the paper provides the correct

empirical estimates, albeit motivated in a slightly incorrect way.

Having said that, we can also provide some empirical evidence that our results, which

aim to understand the dimensionality of Θj +ρφj,t−1, provide a similar results as if we were

to explore the dimensionality of Θj + φj,t−1. While we cannot test directly how much our

results would change if we used Θj+φj,t−1 instead of Θj+ρφj,t−1 without more assumptions

to better separate the classroom shock due to the teacher from the classroom shock not due

to the teacher, we can explore whether our results change when looking at Θj + ρ2φj,t−1

rather than Θj + ρφj,t−1 by conducting a PCA on Ĉ2 = Cov(θi,t, θi,t−2), rather than on Ĉ1.

If the results are similar, then it’s likely that they would also be similar when exploring

Θj + φj,t−1.

In Figures A.3 and A.4, we show that the results of the PCA are nearly identical,

regardless of whether we estimate the components using C1, C2, C3, or C4. More specifically,

in Figure A.3 we illustrate that the components explain a similar percentage of the overall

variance regardless of the lag we use. In Figure A.4, we further show that the weights derived
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from the first component are similar regardless of the lag used. We therefore believe that

the results do not depend on the fact that we assumed C1 ≈ Ω.

Finally, although we used the model without drift to compute the empirical Bayes’

estimates, the empirical Bayes estimates will actually be identical to those computed in a

model with drift. Interestingly, this is true in spite of the fact that erroneously assuming

away drift implies leads us to estimate both Ω and Σj incorrectly. However, since we

estimate Σν as consisting of the the “unexplained” variance of θj,t, which corresponds to

the unexplained variance of Ω + Σj , we still correctly estimate Ω + Σj even though both

the estimates of Ω and Σj are incorrect. For the empirical Bayes’ estimates, therefore,

specifying whether there is drift in teacher effectiveness or not is only important when

including multiple years of data in the estimates; we discuss this more below.

C Empirical Bayes Estimates as Best Linear Predictors

The empirical Bayes estimates are equivalent to the best linear predictors of the true teacher

effects given the previous years’ estimated teacher effects. Formally, suppose we aim to

know what weights Ψk∗
j minimize the mean-squared error of the predicted teacher effect on

measure K given θj,t−1, or:34

Ψk∗
j = arg min

Ψk
E
[(

Θk
j −Ψkθj,t−1

)′
(Θk

j −Ψkθj,t−1

)]
(26)

It is clear from this specification, that Ψk∗
j are just the coefficients from an OLS regression

of Θk
j on θj,t−1. Thus, we get that:

Ψk∗
j = E

[(
(θ′j,t−1θj,t−1)−1θ′j,t−1Θk

j

)′]
(27)

which implies that Ψk∗
j =

(
(Ω+Σj)

−1Ωk
)′

, where Ωk is the kth column of covariance matrix

of Θj . Combining the K estimates of Ψk∗
j , we get that Φ∗ =

(
(Ω + Σj)

−1Ω
)′

. Although

this expression appears different, it turns out that (Σ−1
j + Ω−1)−1Σ−1

j =
(
(Ω + Σj)

−1Ω
)′

.

Thus, the weights on θj,t−1 when calculating the best linear predictions are precisely the

same weights as those computed for the empirical Bayes estimates.35 See Appendix I for

the proof that these two matrix expressions are equal.

While (Σ−1
j + Ω−1)−1Σ−1

j and
(
(Ω + Σj)

−1Ω
)′

are mathematically equivalent, there are

34The expectation here and in Equation (27) is a bit nuanced, as it is essentially is combining two conceptu-
ally different operations by both taking the expectation over the uncertain error terms as well as integrating
over the population of teacher effects which are (in theory) fixed for each individual.

35This does not rule out the possibility that we can compute better non-linear predictors, even without
the full set of normality assumptions. See Gilraine et al. (2020), for example.
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reasons that using
(
(Ω + Σj)

−1Ω
)′

to compute the estimates is preferable. Most notably,

writing Ω∗j = (Σ−1
j + Ω−1)−1Σ−1

j requires that Ω is invertible. This assumption is violated

if the set of measures can be summarized by a lower-dimension vector of true teacher

effectiveness, such as their impact on students’ cognitive and non-cognitive skills. Writing

Ω∗j as
(
(Ω + Σj)

−1Ω
)′

, in contrast, no longer requires that Ω is invertible, and instead only

that Ω+Σj is invertible. Note that even if Ω is theoretically invertible, it is possible that the

estimates of Ω̂ will be not be invertible due to measurement error. Thus, estimation of Ω∗j
may be impossible when defining Ω∗j = (Σ−1

j +Ω−1)−1Σ−1
j even if Ω is theoretically full rank.

In contrast, this is not problematic when using the formulation that Ω∗j =
(
(Ω + Σj)

−1Ω
)′

.

D Teachers with Missing Outcomes

Models for teacher value-added typically assume we observe noisy measures of teacher ef-

fectiveness for all of the outcomes we aim to predict. This is, however, often does not align

with reality. For instance, we may want to estimate effectiveness for teachers in both tested

and non-tested subjects/grades, but teachers in non-tested subjects/grades are missing test

score measures. Similarly, future outcomes, such as grades and attendance, are not available

in all years or for all grades. We now walk through how to estimate teacher effects when

different teachers have different sets of observed measures.

D.1 Derivation of Empirical Bayes Posterior Distribution

First, we partition the full set of measures θj,t−1 into unobserved measures, denoted θ1,j,t−1,

and observed measures, denoted θ2,j,t−1. Similarly, we define Θ1,j to be the true effects

on the unobserved measures and Θ2,j to be the true effects on the observed measures. We

order the measures such that:

θj,t−1 =

[
θ1,j,t−1

θ2,j,t−1

]
and Θj =

[
Θ1,j

Θ2,j

]

but this ordering is without loss of generality and only for notational convenience.36 We

can similarly partition the covariance matrix of the true outcomes as: Ω =

[
Ω1,1 Ω1,2

Ω2,1 Ω2,2

]

and the covariance matrix of the error terms as Σj =

[
Σ1,1,j Σ1,2,j

Σ2,1,j Σ2,2,j

]
.

36In our implementation, we initially permute the measures to be in this form, use these equations to
estimate the posterior mean and covariance, and then permute again to return the measures to their original
ordering.
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Since Θj ∼ N
(
0,Ω

)
, we then get that:

Θ1,j |Θ2,j ∼ N
(

Ω1,2Ω−1
2,2Θ2,j ,Ω1,1 − Ω1,2Ω−1

2,2Ω2,1

)
(28)

We can therefore write that:

Θj =

[
Ω1,2Ω−1

2,2

I

]
Θ2,j + η with η ∼ N

(
0,

[
Ω1,1 − Ω1,2Ω−1

2,2Ω2,1 0

0 0

])
(29)

where I is the identity matrix with the number of rows equal to the number of measures the

researcher observes. Similarly, we can the same derivation used to construct the empirical

Bayes’ estimates without missing data in Section II to get that:

Θ2,j |θ2,j,t−1 ∼ N
(

Ω2,2

(
Ω2,2 + Σj,2,2

)−1
θ2,j,t−1,

(
Ω−1

2,2 + Σ−1
j,2,2

)−1
)

(30)

Again, we can use this expression to write Θ2,j as a linear function of θ2,j,t−1 plus a

normally distributed error term to get that:

Θ2,j = Ω2,2

(
Ω2,2 + Σj,2,2

)−1
θ2,j,t−1 + ζ with ζ ∼ N

(
0,
(
Ω−1

2,2 + Σ−1
j,2,2

)−1

)
(31)

We can then plug in Equation (31) into (29) to get that:

Θj =

[
Ω1,2Ω−1

2,2

I

]
Ω2,2

(
Ω2,2 + Σj,2,2

)−1
θ2,j,t−1 +

[
Ω1,2Ω−1

2,2

I

]
ζ + η (32)

We then note that η is also independent from θ2,j,t−1, i.e., after conditioning the true

effect of the teacher on the set of observed measures, the true effect of the teacher on

the unobserved measures is independent from the estimated effects of the teacher on the

observed measures. Thus, we can re-write Equation (32) as:

Θj |θ2,j,t−1 = N

([
Ω1,2

Ω2,2

] (
Ω2,2 + Σj,2,2

)−1
θ2,j,t−1,

[
Ω1,2Ω−1

2,2

I

]
V ar(ζ)

[
Ω1,2Ω−1

2,2

I

]′
+ V ar(η)

)
(33)

and Equations (31) and (29) make clear that V ar(ζ) =
(
Ω−1

2,2 + Σ−1
j,2,2

)−1
and V ar(η) =[

Ω1,1 − Ω1,2Ω−1
2,2Ω2,1 0

0 0

]
.

We conclude by emphasizing that there is an important assumption implicit in this

approach, which is that after conditioning on θ2,j,t−1, the fact that we are missing θ1,j,t−1
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tells us nothing about the underlying value of Θ1,j . This assumption would be violated if,

for example, teachers are placed according to their comparative advantage. In that case,

the fact that a teacher is slotted to teach a subject/grade without test scores is informative

about her relative ability of improving students’ test scores versus improving students’ other

outcomes. This assumption also underlies the implicit assumption that we know Ω or at

least can estimate Ω precisely. Generally, we rely on individuals for whom we observe

estimated effects on multiple outcomes to estimate the relationship between true teacher

effects on each outcome (Ω). Thus, the key assumption here is that the relationship between

the teacher effects on different outcomes is the same for teachers for whom all measures are

observed as it is for the teachers for whom we only observe a subset of outcomes.

D.2 Comparison with Imputation Approach

The most natural alternative approach is to impute the missing values and then construct

the empirical Bayes estimates according to Section II. Here we contrast the empirical Bayes

approach outlined in Section D with imputation approaches.

To do so, we focus on two potential ways to impute the missing values. The easiest

approach is to impute the missing values as E[θki,t], if θki,t is the value that is missing. Note

that the measures are normalized so that E[θki,t] = 0 for all k. Of course, this approach is

problematic as it is does not distinguish between θki,t being missing and teacher i’s impact

on measure k as being average. Thus, the resulting empirical Bayes estimates are overly

shrunken toward the mean. Note that since the empirical Bayes estimates of all measures

will depend on θki,t, the empirical Bayes estimates of all measures will be shrunken too much.

This comparison is a bit of a straw man, as we compare the method to the most sim-

ple imputation approach. A more complex imputation approach would be to impute the

missing values as E[θki,t|θ
−k
i,t ], where θ−ki,t is the set of measures which are not missing, before

calculating the empirical Bayes estimates according to Section II. Note that E[θki,t|θ
−k
i,t ] are

themselves the empirical Bayes estimates, so among other things this approach is more

complex to implement than the approach mentioned in Section D. It also means that, in

some sense, the approach shrinks the estimates twice: first when constructing E[θki,t|θ
−k
i,t ]

and second when computing the empirical Bayes estimates post-imputation. This means

that, while less obvious than the previous case, the resulting empirical Bayes estimates will

be shrunken too much in this case as well.

There is, however, another force pushing this approach to shrink the empirical Bayes

estimates too little. By imputing the missing values to E[θki,t|θ
−k
i,t ], this approach assumes

that we observe more information about individual i than we actually do. This alone

would lead the empirical Bayes estimates are shrunken too little. Empirically, it appears

the “double shrinkage” dominates and the resulting empirical Bayes estimates are indeed
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shrunken to much.

To see this, we conduct a simulation where we randomly drop 25% of each observation

and estimate the empirical Bayes estimates under three approaches: the missing value

approach defined in Section D; the imputation approach where missing values are imputed

to the overall mean; and the imputation approach where the missing values are imputed

as E[θki,t|θ
−k
i,t ]. We then calculate each individuals’ effectiveness, using the PCA Regression

weights defined in Section II. Figure A.5 shows the three resulting distributions, focusing

on individuals who are missing at least two observation. As can be seen, imputing the

missing values at the overall mean shrinks the distribution much more than just treating

the observations as missing. Similarly, imputing the missing values at E[θki,t|θ
−k
i,t ] also shrinks

the distribution more than just treating the observations as missing, although this is less

pronounced than when imputing missing values to the overall mean.

Of course, the fact that the imputation approaches shrink the measures more than just

treating is as missing does not alone mean that they are “overly shrunk” rather than the

other distribution being under shrunken. In addition to the conceptual reasons to prefer

the missing value approach over the imputation approaches, we can also provide some

empirical evidence that it does better. While we do not observe the true effects, given

our simulation we can compare the three empirical Bayes estimates to the empirical Bayes

estimates generated when none of the observations are missing. When doing so, we find

that the empirical Bayes estimates generated from the missing value approach are closer

(as measured via mean-square error) to the ones when no variables are missing than the

empirical Bayes estimates generated from either of the two imputation approaches.

E Conducting Principal Components Analysis with Multidi-

mensional Empirical Bayes Estimates

Here, we walk through how to reduce the vector Θj of teacher j’s K measures of effectiveness

into a smaller vector of H measures, while minimizing loss of information about teacher

j’s effectiveness. Restricting our attention to linear transformations, we can express this

transformation as a K × H matrix w, where the H measures of teacher effectiveness are

w′Θj .
37

To formally define “information loss” we can reverse this transformation by taking the

smaller vector of H measures, i.e., w′Θj , and attempting to reconstruct the initial K mea-

sures. If we focus only on linear transformations, we can write this as w̃(w′Θj) for a K×H
37As is clear from the proof, restricting ourselves to a linear transformation from Θj is not actually a

restriction. Stated differently, the best rank-H approximation of Θ consists of a linear transformation that
transforms the N ×K data matrix to an N ×H data matrix and then the “reversal,” defined below, of this
transformation to reconstruct a rank-H N ×K data matrix.
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matrix w̃. Since the initial linear transformation w maps a K dimensional space to an H

dimensional space, it is impossible to perfectly reverse the transformation. One natural

approach is to use the transpose of the initial matrix, i.e., w̃ = w. If the initial transfor-

mation, for example, took an unweighted average of the K measures, then the transpose

would map the average back to the K measures by setting each measure as 1
K times the

average. Absent any additional information, this approach seems reasonable and there is

indeed a mathematical justification for why that is the best approach.38

We can then define information loss as the difference between the true teacher effects on

all K dimensions and the reconstructed teacher effects on the K dimensions, or
∑
∀k(Θ

k
j −

(ww′Θj)
k)2.39 Then, we can define the optimal weighting matrix ω∗ as that which, given

all j teachers, minimizes the information loss:

ω∗ = arg min
w

∑
∀j

∑
∀k

(Θk
j − (ww′Θj)

k)2 (34)

While that seems like a challenging optimization problem, the first H components of

a principal component analysis give the rows of ω∗. The intuition behind why this is

true stems from the fact that the first component is the vector of weights that maximizes

the variance of the resulting vector of data, which is essentially the same as minimizing

the amount of remaining variance.40 Since the remaining variance is the object we try to

minimize in Equation (34), the first principal component is the optimal way to reduce the

dimension of the data into a single dimension.41

The challenge here, and in many applied settings, is that we do not observe the “true”

measures that we wish to use PCA to summarize. Rather, we have noisy estimates of

the true measures and need to determine how to account for this noise in our principal

components analysis. In particular, here we aim to summarize Θ, but we only observe the

38Formally, the transpose is connected to the inverse as follows: if the initial transformation is orthogonal
and does not actually reduce the dimension, i.e., H = K, then the inverse of the initial transformation is
the transpose, i.e., ww′ = I where I is the identity matrix. If H < K, then w is the Moore-Penrose inverse
of w′. Thus, w is the matrix such that (w′w)w′Θj = w′Θj for every Θj .

39We include ww′Θj in parenthesis to emphasize that we apply ww′ to the full vector Θj before taking
the kth measure.

40Formally defining the “amount of remaining variance” is a bit challenging, since the data has dimension
K and the loadings that result from the first component have a single dimension. Without quite stating so
explicitly, however, that is essentially what we discussed in the second paragraph of this section.

41For those interested in the technical details, the proof is as follows. An equivalent way to write Equation
(34) is ω∗ = arg minw ||Θ − Θww′||F , where ||.||F is the Frobenius norm. It is well-known that the best
rank-H approximation to Θ, when using the Frobenius norm, is to conduct a singular value decomposition
(SVD) on Θ and then use the H largest singular values and their corresponding singular vectors to construct
a rank-H matrix. Let the SVD on Θ be written as UΣV ′, as is convention. Since V are the principal
components, it then follows that Θww′ = UΣV ′VHV

′
H when w consists of the first H principal components,

denoted as VH . Since the components are orthogonal, V ′VHV
′
H = V ′H and so ΘVHV

′
H = UΣV ′H = UHΣHV

′
H .

Thus, ΘVHV
′
H the best rank-H approximation to Θ and so VH is clearly the best choice of w.
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value-added estimates, i.e., the θj,t−1’s, and the empirical Bayes estimates, i.e., Θ̂.

We overcome this challenge by using the fact that the principal components correspond

to the eigenvectors of the covariance matrix, Ω. More specifically, Ω can be factorized

into WΛW−1, where W is the matrix of right eigenvectors and Λ is a diagonal matrix of

eigenvalues. The columns of W are then the principal components, ordered in importance

by the value of the corresponding eigenvalue, with the amount of variation explained by

a component being equal to the value of its corresponding eigenvalue divided by the sum

of the eigenvalues. In short, by using just the covariance matrix, we can estimate the H

principal components with the largest eigenvalues to obtain the matrix of weights ω∗ that

solves the optimization problem defined in Equation (34). Applying the estimate ω∗ to the

matrix Θ gives the score matrix Θω∗, which is the best way to summarize Θ while using

only H measures. Of course, while we can estimate ω∗ without observing Θ, we cannot

compute Θω∗ without observing Θ. Thus, we also need to compute the empirical Bayes’

estimates of Θω∗ (in the same way we computed the empirical Bayes estimates of Θ). We

denote this as Θ̂ω∗, where Θ̂ are the empirical Bayes estimates of Θ.42

F Using Empirical Bayes’ Estimates as Covariates

Researchers often use the empirical Bayes estimates as covariates in a subsequent regression.

In cases where the empirical Bayes estimate consist of a single dimension and are the only

covariate in this regression, it is well known that one can interpret the coefficient as if the

true measure was used in the regression (Jacob and Lefgren (2008)). We show here that

the same is true when the empirical Bayes estimates are multidimensional and when other

covariates are included in the regression; however, there are some subtitles that we discuss

as well. We start by presenting the formal statement and proof, then discuss the result, and

then provide some empirical results that illustrate how subtle issues in the implementation

can impact that resulting coefficients.

F.1 Formal Statement and Proof

To formalize this, suppose that we want to use the empirical Bayes estimates as regressors,

i.e., we want to estimate a regression of some outcome Θ̃j on Θj . We will let γ be the OLS

coefficient resulting from that regression, i.e.,:

γ = lim
N→∞

(Θ′Θ)−1Θ′Θ̃ (35)

42The fact that the empirical Bayes’ estimates of ω∗Θ are ω∗Θ̂ follows from the fact that if a m×1 vector
x is distributed normally N(µ,Σ), then w′x ∼ N(w′µ,w′Σw) for any m× 1 vector of weights w.
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where the jth row of Θ is Θ′j . Since we do not observe Θj directly, however, we instead

need to estimate

γ̂ = lim
N→∞

(Θ̂′Θ̂)−1Θ̂′Θ̃ (36)

where the jth row of Θ̂ is Θ̂′j and Θ̂j = Ω∗jθj,t−1. Give these definitions, we can present the

formal theorem:

Theorem 1. Using the definitions above, γ̂ = γ.

Proof. We start by using the law of large numbers, together with the fact that Θ̂j = Ω∗jθj,t−1,

to get that 1
N Θ̂′Θ̂ → E[(Ω∗jθj,t−1)(Ω∗jθj,t−1)′]. From the assumptions inherent to the the

model we discuss in Section II.A, it follows that E[(Ω∗jθj,t−1)(Ω∗jθj,t−1)′] = E[Ω∗j (Ω+Σj)Ω
∗′
j ].

Thus, 1
N Θ̂′Θ̂→ E[Ω∗j (Ω + Σj)Ω

∗′
j ].

Next, also using the law of large numbers we get that 1
N Θ̂′Θ̃ → E[(Ω∗jθj,t−1)Θ̃j ]. From

the fact that γ is the OLS coefficient resulting from a regression of θ̃j on Θj , we can write

Θ̃j = Θ′jγ + ej , where E[Θjej ] = 0. Thus, E[(Ω∗jθj,t−1)Θ̃j ] = E[(Ω∗jθj,t−1)Θ′jγ + ej ] =

E[Ω∗jθj,t−1Θ′j ]γ + E[Ω∗jθj,t−1ej ].

We will assume that E[θj,t−1ej ] = 0 since E[Θjej ] = 0, which is essentially assuming

that the estimation error for Θj is uncorrelated with the outcome of interest Θ̃j . This

would generally be true if, for example, the long-run outcome of interest is measured using

a different cohort of students than is used to estimate the short-term impact.

Under this assumption, we get that 1
N Θ̂′Θ̃→ E[Ω∗jΩ]γ. This follows from the fact that

E[θj,t−1Θ′j ] = Ω, which reflects the fact that the estimation error is uncorrelated with the

true impact of the teacher.

Combining the above two results, we get that:

γ̂ = E[Ω∗j (Ω + Σj)Ω
∗′
j ]−1E[Ω∗jΩ]γ (37)

which itself implies that γ̂ = γ if (and only if) E[Ω∗j (Ω + Σj)Ω
∗′
j ] = E[Ω∗jΩ]. Using the

formulation that Ω∗j = (Σ−1
j + Ω−1)−1Σ−1

j it is far from obvious that this is the case.

That it is true, however, is easy to see when using the alternative description, that Ω∗j =

Ω(Ω + Σj)
−1. From this, we get that:

E[Ω∗j (Ω + Σj)Ω
∗′
j ] = EΩ(Ω + Σj)

−1(Ω + Σj)(Ω + Σj)
−1Ω]

= E[Ω(Ω + Σj)
−1Ω]

= E[Ω∗jΩ]
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F.2 Discussion of Results

An important implication of this proof is that using the “correct” Ω∗j , i.e. Ω∗j = Ω(Ω+Σj)
−1,

is not only important for efficiency reasons (e.g. the difference between weighted least

squares and ordinary least squares), but is a requirement for the consistency of the resulting

coefficients. Stated differently, using a different Ω∗j leads to inconsistent coefficient estimates,

i.e. γ̂ 6= γ.43 While this is clear from the proof, this has a number of important implications.

First, it is worth noting that conducting the empirical Bayes’ shrinkage separately for each

measure corresponds to a different Ω∗j and therefore would lead to inconsistent coefficients

in any resulting regression.44

More subtly, suppose after estimating the empirical Bayes’ estimates on a number of

short-term measures, one first ran a series of simple linear regressions to look at how each

measure individual was related to the long-term outcome of interest before then running a

regression that included all of the empirical Bayes’ estimates in a single regression. Con-

fusingly, while the coefficients from the final regression could be interpreted as if the true

measures were used as covariates in this case, the coefficients from the simple linear regres-

sions could not be interpreted this way. If one wants to conduct this analysis, the above

result suggests that one should estimate conduct the empirical Bayes’ shrinkage differently

for each regression that is run where the set of measures used to construct Ω∗j , and hence

the empirical Bayes’ estimates, is restricted to those used in the regression.

Similarly, suppose that either to improve identification or precision, one hopes to in-

clude additional covariates in the regression of the long-term outcome on the empirical

Bayes’ measures. Again, the above results suggest that unless the additional covariates are

uncorrelated with both the true effects and the measurement error, the resulting coefficient

estimates will be inconsistent.45

All of these points are more apparent when the use of empirical Bayes’ estimates as

covariates is viewed as the second stage of a two-stage least squared approach to dealing

with measurement error, in which θj,t serve as instruments for Θj .
46 One subtle difference

43To see this, take the simply example where every teacher has the same number of students, in which
case Ω∗j is identical for all j and so we can ignore the expectations. Thus, Ω∗j (Ω + Σj)Ω

∗′
j = Ω∗jΩ can be

solved directly to get that Ω∗
′
j = (Ω+Σj)

−1Ω. When teachers have different number of students, it becomes
more complicated and the Ω∗j required for consistency is no longer unique: most notably both (Ω + Σj)

−1Ω
and E[(Ω + Σj)

−1Ω] would work. This subtlety does not impact the points discussed below, however.
44More specifically, conducting the empirical Bayes’ shrinkage separately for each measure corresponds to

an Ω∗j that is identical to Ω(Ω + Σj)
−1 on the diagonals and zero everywhere else. This is therefore only

identical to Ω(Ω+Σj)
−1 if both the true effects and the measurement error are uncorrelated across measures.

45To see this, we can think of simply extending Θ̂ to include these covariates. This changes Ω and Σj ,
but does not change the fact that Ω∗j needs to equal Ω(Ω + Σj)

−1. Unless Ω and Σj are both block diagonal
matrices, with the blocks corresponding (at least) to the θj,t−1’s and the additional covariates, one cannot
do the empirical Bayes’ only on the θj,t−1’s and still obtain the correct result.

46One important implication of this is that it suggests that it would be possible to leverage results from
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is that in our context the coefficients from the “first stage” differ depending on the number

of students the teacher has, which is why we present the formal proof in the appendix. This

can be seen most clearly when one views Ω∗j as the coefficients from a regression of Θj on

θj,t−1, which we discuss in the text. This means that Θ̂j are the predicted values from this

regression, which can then be plugged in to the second-stage regression.

F.3 Empirical Example

In the discussion above, we highlighted that we needed to use the multivariate empirical

Bayes approach – as opposed to generating an empirical Bayes estimates separately for each

measure – when using multiple measures in a regression. Here, we present some empirical

results highlighting this fact.

To do so, we assume that there are two measures in which we are interested, Θ1 and Θ2,

which are distributed N(0,Ω) with Ω =
( 1 ρΩ
ρΩ 1

)
. The measures themselves are estimated

with error, which itself is distributed N(0,Σj) with Σj =
( 1 ρε
ρε 1

)
.

Finally, we assume that outcome of interest is related to the two measures of interest as

follows:

Θ̃j = 0.5Θ1,j + 1.0Θ2,j + νj (38)

where νj is an error term that is independent from both Θ1 and Θ2 as well as the error

with which they are estimated.

We then consider two regressions: one in which the first measure is the only covariate

and one in which both measures are included as covariates. For each regression, we then

consider three ways in which the convariates are constructed. In the first, they are estimated

via the multidimensional empirical Bayes approach described here; in the second, the single-

dimensional empirical Bayes approach is run separately for each measure. Finally, we also

include a case where the true measures are observed without error, which serves as the

benchmark.

The results are presented in Table A1 below, which only show the coefficient on the first

measure for both regressions to simplify the presentation of results.

As seen under the columns under the header “Single Linear Regression,” when the first

measure is the only one included in the subsequent regression constructing the empirical

Bayes using only that measure produces coefficients identical to the case where the true

measures are observed, while constructing the empirical Bayes using both measures as

described in this paper produces different coefficients depending on the correlation of the

two measures’ error terms. When the correlation in the error term is less than the correlation

the research on errors-in-variables if one was interested in estimating non-linear relationships between the
true teacher effects and an outcome of interest (e.g., Amemiya (1985); Hausman et al. (1991); Hong and
Tamer (2003); Lewbel (1998); Hu and Schennach (2008)).
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Single Linear Regression Multiple Linear Regression
ρΩ ρε Multi EB Single EB Truth Multi EB Single EB Truth

0.5 -0.9 1.80 1.0 1.0 0.5 1.13 0.5
0.5 -0.7 1.71 1.0 1.0 0.5 1.07 0.5
0.5 -0.5 1.63 1.0 1.0 0.5 1.0 0.5
0.5 -0.3 1.52 1.0 1.0 0.5 0.92 0.5
0.5 -0.1 1.41 1.0 1.0 0.5 0.83 0.5
0.5 0.0 1.36 1.0 1.0 0.5 0.78 0.5
0.5 0.1 1.30 1.0 1.0 0.5 0.73 0.5
0.5 0.3 1.16 1.0 1.0 0.5 0.63 0.5
0.5 0.5 1.0 1.0 1.0 0.5 0.5 0.5
0.5 0.7 0.82 1.0 1.0 0.5 0.36 0.5
0.5 0.9 0.62 1.0 1.0 0.5 0.19 0.5

Table A1: This table shows how the coefficients in a single linear regression and multiple
linear regression depend on whether the empirical Bayes estimates are constructed via a
multidimensional empirical Bayes method (Multi EB) or separately (Single EB) and how
those coefficients relate to the coefficients obtained for a regrssion where the true measures
were observed (i.e., Truth).

between the true measures, the coefficient converges to a parameter larger than the true

coefficient, i.e., the coefficient obtained if one was to observe the true measure.

In contrast, as seen under the columns under the header “Multiple Linear Regression,”

when both measures are included in the regression it is important to construct the empirical

Bayes estimates using the multidimensional approach. While doing so always gives the same

coefficient on the first measure as it would if the true measure was observed, if the empirical

Bayes measures are instead constructed separately for each measure the resulting coefficient

depends on how the covariance in the error term relates to the covariance between the true

measures. Again, if the covariance of the error terms is less than the covariance between the

true measures, the resulting coefficient is overestimated and vice versa. While note shown,

the coefficient on the second measure in the multivariate regression has a similar pattern,

in which the coefficient is overestimated when the coveriance of the error terms is less than

the covariance of the true measures and underestimated when the covariance of the error

term is more than the covariance of the true measures.

G Implied Weights on the Raw Effect Estimates

Note that there were two sets of weights that we discussed in Section V. The first is the

set of weights implied by the multidimensional empirical Bayes that turn the combined raw
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estimates into the best estimates of the teachers’ true effects, denoted by Ω∗j .
47 The second

is the set of weights that determine how a principal can reduce the multiple dimensions of

teacher effectiveness into a small number of summary measures, e.g., the first eigenvalue of

the short-term effectiveness measures or their relative relationship with long-term effective-

ness measures. Here, we combine the two results to illustrate the weights the different raw

estimates receive when computing the final measures.

The key is to leverage the fact that E[Θj |θj,t−1] = Ω∗jθj,t−1, where as before Ω∗j is the

matrix implied by the multidimensional empirical Bayes approach and is defined above in

Section II. As a reminder of notation, Θj corresponds to the true effectiveness of teacher j

and θj,t−1 is the raw estimate of teacher effectiveness, i.e., the average residuals as opposed

to the empirical Bayes’ value-added estimates. It follows that E[ω′Θj |θj,t−1] = ω′Ω∗jθj,t−1

for any set of weights ω that one wants to put on the true measures of effectiveness. Thus,

ω′Ω∗j are the weights on the raw measures, which we present below.

As in the previous section we focus on three potential choices for ω:

1. First Eigenvalue: Use the vector of weights from first principal component.

2. PCA Regression: Use the coefficients from a regression of high school graduation rates

on empirical Bayes’ estimates of the first four principal components.

3. Regression: Use the coefficients from a regression of high school graduation rates on

empirical Bayes’ estimates of the K outcomes.

Table A.4 uses the PCA and regression results to construct these three types of weights

for elementary and middle school teachers. Note that the specific weights depend on Ω∗j ,

which varies across teachers and depends on how many students they taught.48 For our

example, we focus on a hypothetical teacher who teachers the average number of students.

Columns one to three contain the unstandardized weights, while the weights in columns

four to six are standardized according to the variance in teacher effects on the relevant

outcome. Thus, columns one to three give the weights that should actually be used on the

raw outcomes (i.e. ω′Ω∗j ), while columns four to six illustrates how important each of the

raw outcomes are in determining the summative measure.

For elementary school, (panel (A) of Table A.4), teacher effects on future outcomes

receive a lot more weight than teacher effects on current test scores (and attendance).

Weights on attendance are typically small and always negative. The weights on current test

scores vary across the weighting approach employed and in the PCA regression approach,

the weights on math test scores are negative.

47Explicitly, the estimates are “best” under a mean-squared loss function and the normality assumptions.
48In the case where multiple years of data are incorporated into the empirical Bayes’ measures, it will also

depend on how many years teachers are in the data.
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For middle school, (panel (B) of Table A.4), teacher effects on future grades in subjects

other than those taught receive the most weight. Test scores also receive substantial weight.

The relative weights of the four remaining dimensions vary across methods.

Which set of weights they will want to use depends on the goals of evaluation and

what underlying measure of effectiveness the decision maker is trying to summarize. The

weights from the regressions in columns (2) and (3) are likely most appropriate when the

decision maker cares about placing the most weight on the short-term measures most related

to longer-term outcomes.49 The weights from the first eigenvalue, in contrast, are more

appropriate when the decisionmaker simply aims to best summarize effects on the short-

term outcomes.

H Incorporating Multiple Years of Data into the Estimates

H.1 Without Drift

In the model without drift in teacher effectiveness, incorporating multiple years of data into

the estimates is straightforward. This is because the assumption of no drift in effectiveness

implies the teacher effect estimates in year t− 2, i.e. θj,t−2, are just as predictive of teacher

effectiveness in year t, i.e. Θj,t, as are the teacher effect estimates from year t−1, i.e. θj,t−1.

We therefore do not need to distinguish between θj,t−1, θj,t−2, etc. and instead can just

condition on the average of the teacher effect estimates.

Formally, suppose that teacher j has been in the data for M years prior to year t. We

can then define:

θj,−t =

M∑
m=1

θj,t−m (39)

Under the assumption of no drift, we can use the same derivation as before to get an

almost identical expression:

E
[
Θj,t|θj,−t

]
= Ω∗θj,−t (40)

where as before Ω∗ =
(
Σ−1
j + Ω−1

)−1
Σ−1
j , Ω is the covariance matrix of the true teacher ef-

fects and Σj is the covariance matrix of the error terms implicit in θj,−t. The only additional

challenge here is to estimate Σj now that the empirical Bayes’ estimate is conditioning on

an average measure over years (and students within each year) as well as over students in

49The differences between columns (2) and (3) is less a question of what the decision maker cares about
and more a practical question of whether reducing the dimensions of the data before the regression helps
improve the predictions.
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a single year. From the assumptions discussed in Section II.A, it follows that:

Σj =
1

M
Σν +

1

M

M∑
m=1

1

Nj,t−m
Σε (41)

where Nj,t−m is the number of students teacher j taught in year t−m.50

As we discuss in Appendix B, the assumption of no drift in teacher effectiveness is

not particularly consequential when including only a single year in the empirical Bayes

estimates. However, whether one allows for drift in teacher effectiveness does impact the

interpretation and estimation of the empirical Bayes estimates when multiple years are

included in the estimates. Intuitively, this is because drift in teacher effectiveness means

the estimated teacher effects from year t − 1 are more predictive of the teacher’s effect in

year t than the estimated teacher effects from year t −M . Thus, when constructing the

posterior distribution, one should give more weight to the estimates from year t − 1 than

on the ones from year t−M . Appendix H explains this in more depth and shows how one

can compute the empirical Bayes’ estimates of multidimensional teacher quality in a model

with drift in teacher effectiveness.

H.2 With Drift

We next use the model presented in Appendix B to construct the empirical Bayes’ estimates

in a model which allows for drift in teacher effectiveness.

To do so, we will initially focus on the case where we only aim to condition on two years,

θj,t−1 and θj,t−2, rather than the more general case of conditioning on M years. It is easy

to see how this can be extended to the more general case.

To start, we note that:(
θj,t−1

θj,t−2

)∣∣∣∣∣
(

Θj,t−1

Θj,t−2

)
∼ N

([
Θj,t−1

Θj,t−2

]
,

[
Σj,t−1 0

0 Σj,t−2

])
(42)

where Σj,t−1 = Σν + 1
Nj,t−1

Σε and Nj,t−1 is the number of students teacher j teaches in

year t − 1. Most notably, once you condition on Θj,t−1 and Θj,t−2, θj,t−1 and θj,t−2 are

independent.

50We subtly jumped to conditioning on θj,−t rather than on θj,t−1, θj,t−2, ..., θj,t−M . In a model without
drift, this is mostly inconsequential, although it is not actually quite optimal. Instead, one should condition
on a weighted average of the previous estimates, with the weights being proportional to the variance of the
estimates. In practice, we expect (and encourage) researchers and practitioners to allow for drift in teacher
effectiveness when using multiple years of data to construct teacher value-added estimates. We outline how
to do so in Appendix H. If one wants to use the optimal weights without allowing for drift, one can rely on
the results presented here and assume that the covariances between the years are all identical.
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Next, from our assumptions on drift, we get that(
Θj,t−1

Θj,t−2

)
∼ N

([
0

0

]
,

[
Ω C1

C1 Ω

])
(43)

Thus, from Bayes’ Law we get that:

E

[(
Θj,t−1

Θj,t−2

)∣∣∣∣∣
(
θj,t−1

θj,t−2

)]
=

[
Ω C1

C1 Ω

][
Ω + Σj,t−1 C1

C1 Ω + Σj,t−2

]−1 [
θj,t−1

θj,t−2

]
(44)

Finally, from our assumptions on drift we get that: Θj,t

Θj,t−1

Θj,t−2

 ∼ N(
0

0

0

 ,
 Ω C1 C2

C1 Ω C1

C2 C1 Ω

) (45)

and so

Θj,t

∣∣∣∣∣
(

Θj,t−1

Θj,t−2

)
∼ N

([
C1 C2

] [ Ω C1

C1 Ω

]−1 [
Θj,t−1

Θj,t−2

]
,Σ

)
(46)

for a covariance matrix Σ = Ω−
[
C1 C2

] [ Ω C1

C1 Ω

]−1 [
C1

C2

]
. Thus, we get that

E
[
Θj,t|

(
θj,t−1

θj,t−2

)]
=
[
C1 C2

] [ Ω C1

C1 Ω

]−1 [
Ω C1

C1 Ω

][
Ω + Σj,t−1 C1

C1 Ω + Σj,t−2

]−1 [
θj,t−1

θj,t−2

]

=
[
C1 C2

] [Ω + Σj,t−1 C1

C1 Ω + Σj,t−2

]−1 [
θj,t−1

θj,t−2

]

I Additional Proofs

Theorem 2. Let Ω =
( σ2

Ω,1 ρΩ

ρΩ σ2
Ω,2

)
and Σj =

( σ2
Σ,1 ρΣ

ρΣ σ2
Σ,2

)
. If denote Ω∗j =

( ω1,1 ω1,2
ω2,1 ω2,2

)
, we get

that:

ω1,1 =
1

det(Ω + Σj)

[
σ2

Ω,1σ
2
Ω,2 + σ2

Ω,1σ
2
Σ,2 − ρ2

Ω − ρΩρΣ

]
(47)

ω1,2 =
1

det(Ω + Σj)

[
σ2

Σ,1ρΩ − σ2
Ω,1ρΣ

]
(48)

Proof. This is most clearly seen using the fact that Ω∗j can also be written as
(
(Ω+Σj)

−1Ω
)′

,
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which we prove below. We then get that:

Ω∗j =
(
(Ω + Σj)

−1Ω
)′

(49)

=

[
1

det(Ω + Σj)

(
σ2

Ω,2 + σ2
Σ,2 −(ρΩ + ρΣ)

−(ρΩ + ρΣ) σ2
Ω,1 + σ2

Σ,1

)(
σ2

Ω,1 ρΩ

ρΩ σ2
Ω,2

)]′
(50)

(51)

where det(Ω + Σj) is the determinant of Ω + Σj . Multiplying the matrices and accounting

for the transpose, we get that:

ω1,1 =
1

det(Ω + Σj)

[
(σ2

Ω,2 + σ2
Σ,2)σ2

Ω,1 − ρΩ(ρΩ + ρΣ)
]

(52)

ω1,2 =
1

det(Ω + Σj)

[
(σ2

Ω,2 + σ2
Σ,2)ρΩ − σ2

Ω,2(ρΩ + ρΣ)
]

(53)

=
1

det(Ω + Σj)

[
σ2

Σ,2ρΩ − σ2
Ω,2ρΣ

]
(54)

ω2,1 =
1

det(Ω + Σj)

[
(σ2

Ω,1 + σ2
Σ,1)ρΩ − σ2

Σ,1(ρΩ + ρΣ)
]

(55)

=
1

det(Ω + Σj)

[
σ2

Σ,1ρΩ − σ2
Ω,1ρΣ

]
(56)

ω2,2 =
1

det(Ω + Σj)

[
(σ2

Ω,1 + σ2
Σ,1)σ2

Ω,2 − ρΩ(ρΩ + ρΣ)
]

(57)

Theorem 3. For any symmetric, invertible matrices Σj and Ω such that Σj + Ω is also

invertible, we have:

(Σ−1
j + Ω−1)−1Σ−1

j =
(
(Ω + Σj)

−1Ω
)′

(58)

Proof. We first note that if two matrices A and B are invertible, then A = B if and only

if A−1 = B−1. So we will show that
[
(Σ−1

j + Ω−1)−1Σ−1
j

]−1
=
[(

(Ω + Σj)
−1Ω

)′]−1
. Using

the properties of inverses, we get that:[
(Σ−1

j + Ω−1)−1Σ−1
j

]−1
= Σj(Σ

−1
j + Ω−1) (59)

= ΣjΣ
−1
j + ΣjΩ

−1 (60)

= I + ΣjΩ
−1 (61)

where I is the identity matrix.

Similarly, using the properties of inverses, transposes, and the the fact that Ω and Σj
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are symmetric, we get that:[(
(Ω + Σj)

−1Ω
)′]−1

=
[
Ω(Ω + Σj)

−1
]−1

(62)

= (Ω + Σj)Ω
−1 (63)

= I + ΣjΩ
−1 (64)

Two final notes. First, the condition that Σj and Ω are both invertible, as is Σj + Ω, is

satisfied when Σj and Ω are positive definite matrices. Thus, the conditions for the proof

will hold in our context as long as Ω is invertible. Second, this proof provides yet another

way to express the weights, where Ω∗j =
(
I + ΣjΩ

−1
)−1

. This also makes clear that the

weights depend on the relative size of the error terms, Σj , and the true effects, Ω.

Theorem 4. Under the estimate approach specified in Section II.A, the model specified in

Section II.C, and the assumption that the number of teachers increases to infinity and each

teacher has multiple students, we have that: β̂ → β, Ω̂ → Ω, Σ̂ε → Σε, Σ̂ν → Σν , and

Σ̂φ → Σφ.

Proof. We start by showing that under the assumptions, β̂ → β as the number of students

goes to infinity. To do so, we note that from the Frisch-Waugh-Lovell theorem including

teacher fixed effects is equivalent to demeaning the outcome and covariates at the teacher-

level and then running a regression at the student-level without the teacher fixed-effects.

Denoting Xj,t as the average outcome on measure X over the students who teacher j teaches

in year t, our statistical model of student outcomes (e.g. Equation (19)) implies that:

yi,t − yj,t = β · (Xi,t −Xj,t)− (φj′(i), t− φj,t)− (εi,t − εj,t) (65)

Under our assumption that the error terms are distributed normally and independent from

the other variables, the coefficient from the regression of yi,t−1 − yj,t−1 on Xi,t−1 −Xj,t−1

will converge to β as the number of students go to infinity.

From this, we get that β̂ = β + op(1) and so we can ignore differences between β̂ and

β when considering consistency. It therefore follows that êi,t = φi,t + εi,t and therefore

Σ̂ε → Σε.

Similarly, the fact that β̂ = β + op(1) implies that asymptotically θj,j′,t = Θj + νj,t +

φj′(i),t + 1
Nj

∑
εi,t. From this and our assumptions on the independence of the error terms

and that fact that Σ̂ε → Σε, it follows that Ω̂→ Ω when Ω̂ is defined by Equation (??).

We can prove that Σ̂ν → Σν and Σ̂φ → Σφ in a similar fashion, i.e., by using assumptions

on the independence of the error terms and the fact that our previous estimated parameters

converge to their true values.
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